Search results

1 – 10 of over 4000
Article
Publication date: 24 November 2021

Mohammed S. Ismail, Mohamed R. Berber, Ziyad A. Alrowaili and Mohamed Pourkashanian

This paper aims to numerically solve fully developed laminar flow in trapezoidal ducts with rounded corners which result following forming processes.

Abstract

Purpose

This paper aims to numerically solve fully developed laminar flow in trapezoidal ducts with rounded corners which result following forming processes.

Design/methodology/approach

A two-dimensional model for a trapezoidal duct with rounded corners is developed and conservation of momentum equation is solved. The flow is assumed to be steady, fully developed, laminar, isothermal and incompressible. The key flow characteristics including the Poiseuille number and the incremental pressure drop have been computed and tabulated for a wide range of: sidewall angle (θ); the ratio of the height of the duct to its smaller base (α); and the ratio of the fillet radius of the duct to its smaller base (β).

Findings

The results show that Poiseuille number decreases, and all the other dimensionless numbers increase with increasing the radii of the fillets of the duct; these effects were found to amplify with decreasing duct heights or increasing sidewall angles. The maximum axial velocity was shown to increase with increasing the radii of the fillets of the duct. For normally used ducts in hydrogen fuel cells, the impact of rounded corners cannot be overlooked for very low channel heights or very high sidewall angles.

Practical implications

The data generated in this study are highly valuable for engineers interested in estimating pressure drops in rounded trapezoidal ducts; these ducts have been increasingly used in hydrogen fuel cells where flow channels are stamped on thin metallic sheets.

Originality/value

Fully developed laminar flow in trapezoidal ducts with four rounded corners has been solved for the first time, allowing for more accurate estimation of pressure drop.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 January 2021

Mingyu Zhang, Jing Wang, Peiran Yang, Yi Liu, Zhaohua Shang and Longjie Dai

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for…

Abstract

Purpose

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for finite line contact.

Design/methodology/approach

A constitutive equation: Ree-Eyring fluid is used in the calculations. The real chain sizes, i.e. equivalent radius of curvature, bush length, length of the rounded corner area and rounded corner radius, are jointed investigated. Moreover, the effects of the length of the rounded corner area and the radius of rounded corner are investigated.

Findings

It is found that the current standard of the chain might not consider the importance of lubrication, and the lubrication state can be improved effectively by choosing an optimal radius of rounded corner and the length of the corner area.

Originality/value

By optimally selecting sizes, the occurrence of high pressure, high temperature rise and near zero film thickness at the ends of bush, especially under heavier load, can be effectively avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0031/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2016

Sajjad Miran and Chang Hyun Sohn

– The purpose of this paper is to focus on the variation of wake structures and aerodynamic forces with changes in the cylinder corner radius and orientation.

Abstract

Purpose

The purpose of this paper is to focus on the variation of wake structures and aerodynamic forces with changes in the cylinder corner radius and orientation.

Design/methodology/approach

Numerical simulations were performed for flow past a square cylinder with different corner radii placed at an angle to the incoming flow. In the present study, the rounded corner ratio R/D=0 (square cylinder), 0.1, 0.2, 0.3, and 0.4 (where R is the corner radius and D is the characteristic dimension of the body) and the angle of incidence α in the range of 0°-45° were considered.

Findings

The numerical model was validated by comparing the present results with results in the available literature, and they were found to be in good agreement. The critical incidence angle for the rounded corner cylinder – corresponding to the minimum mean drag coefficient (C D ), the minimum root mean square value of the lift coefficient C L,RMS), and the maximum Strouhal number – shifted to a lower incidence angle compared with the sharp corner square cylinder. The minimum drag and lift coefficient at R/D=0 were observed for the critical incidence angle αcri=12°, whereas for R/D=0.1-0.4, the minimum drag and lift coefficient were found to be within the range of 5°-10° for α.

Originality/value

The presented results shows the importance of the incidence angle and rounded corners of the square cylinder for reduction of aerodynamic forces. The two parameters support the shear layer flow reattachment on the lateral surface of the cylinder, have a strong correlation with the reduction of the wake width, and hence reduced the values of C D and C L .

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Sajjad Miran and Chang Hyun Sohn

– The purpose of this paper is to numerically investigate the influence of corner radius on flow past a square cylinder at a Reynolds number 500.

Abstract

Purpose

The purpose of this paper is to numerically investigate the influence of corner radius on flow past a square cylinder at a Reynolds number 500.

Design/methodology/approach

Six models were studied, for R/D=0 (square cylinder), 0.1, 0.2, 0.3, 0.4, and 0.5 (circular cylinder), where R is the corner radius and D is the characteristic dimension of the body. The transient two-dimensional (2D) laminar and large eddy simulations (LES) models were employed using finite volume code. The Strouhal number, mean drag coefficient (CD), and root mean square (RMS) value of lift coefficient (CL,RMS), for different R/D values, were computed and compared with experimental and other numerical results.

Findings

The computational results showed good agreement with previously published results for a Reynolds number, Re=500. It was found that the corner effect on a square cylinder greatly influences the flow characteristics around the cylinder. Results indicate that, as the corner radius ratio, R/D, increases, the Strouhal number increases rapidly for R/D=0-0.2, and then gradually rises between R/D=0.2 and 0.5. The minimum values of the mean drag coefficient and the RMS value of lift coefficient were found around R/D=0.2, which is verified by the time averaged streamwise velocity deficit profile.

Originality/value

On the basis of the numerical results, it is concluded that rounded corners on a square cylinder are useful in reducing the drag and lift forces generated behind a cylinder. Finally, it is suggested that with a rounded corner ratio of around R/D=0.2, the drag and oscillation of the cylinder can be greatly reduced, as compared to circular and square cylinders.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1990

Lothar Rossol and Kenneth A. Stoddard

In the first part of this article in the March issue only robot motion, with the robot stopping at each programmed position, was discussed. In the second part, the problem of…

Abstract

In the first part of this article in the March issue only robot motion, with the robot stopping at each programmed position, was discussed. In the second part, the problem of continuous movement through, or near, a taught position is considered.

Details

Industrial Robot: An International Journal, vol. 17 no. 2
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 2 September 2019

Mahfoud Touhari and Ratiba Kettab Mitiche

Covering a fiber-reinforced concrete column (fiber reinforced plastic (FRP)) improves the performance of the column primarily. The purpose of this paper is to investigate the…

Abstract

Purpose

Covering a fiber-reinforced concrete column (fiber reinforced plastic (FRP)) improves the performance of the column primarily. The purpose of this paper is to investigate the behavior of small FRP concrete columns that are subject to axial pressure loading, in order to study the effect of many parameters on the effectiveness of FRP couplings on circular and square concrete columns.

Design/methodology/approach

These parameters include the shape of the browser (circular and square), whole core and cavity, square radius of square columns, concrete strength (low strength, normal and high), type of FRP (carbon and glass) and number of FRP (1–3) layers. The effective fibrillation failure strain was investigated and the effect of effective lateral occlusion pressure.

Findings

The results of the test showed that the FRP-coated columns improved significantly the final conditions of both the circular and square samples compared to the unrestricted columns; however, improvement of square samples was not as prominent as improvement in circular samples. The results indicated that many parameters significantly affected the behavior of FRP-confined columns. A new model for predicting compressive force and the corresponding strain of FRP is presented. A good relationship is obtained between the proposed equations and the current experimental results.

Originality/value

The average hoop strain in FRP wraps at rupture in FRP-confined concrete specimens can be much lower than that given by tensile coupon tests, meaning the theoretical assumption that the FRP-confined concrete cylinder ruptures when the FRP material tensile strength attained at its maximum is not suitable. Based on this observation, the effective peak strength and corresponding strain formula for FRP concrete confined columns must be based on the effective hoop rupture strain composite materials.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 November 2017

Wei Cao, Jiaxu Wang, Wei Pu, Ying Zhang, Jiqiang Wu, Si Ren and Jianbing Long

Previous studies were mainly focused on profile designation of bearing rollers and lubrication performance without considering roller-races skidding. However, the width of round

Abstract

Purpose

Previous studies were mainly focused on profile designation of bearing rollers and lubrication performance without considering roller-races skidding. However, the width of round corner, load, rotational speed and some other parameters have significant effects on the roller-races sliding speed. This paper aims to investigate the effect of round corner on lubricating characteristics between the heavily loaded roller and inner race considering skidding and roughness.

Design/methodology/approach

A mixed elastohydrodynamic lubrication (EHL) model which is capable of handling practical cases with 3D machined roughness is combined with the skidding model to investigate the effect of round corner on lubricating characteristics between the heavily loaded roller and inner race.

Findings

The width of round corner and round corner radius have a desirable range under certain operating condition, within which the maximum pressure, stress and maximum flash temperature remain low. The optimized range is sensitive to the operating condition. Roughness and skidding narrow the optimized range of round corner radius. Roughness increases the pressure peak, Mises stress and friction coefficient. At the same time, skidding and roughness have obvious effects on film thickness at the contact center area if the round radius is small.

Research limitations/implications

This paper uses the Harris skidding model that has a relatively bigger error, which is not accurate if the bearing load is less.

Practical implications

This paper unifies the skidding model and mixed EHL model which can be used as a tool for optimization design and lubricating performance analysis of cylindrical roller bearing.

Originality/value

Lubrication analyses for roller bearing are assumed to be pure rolling contact between roller and races in a previous study, which could not reflect the real contact characteristics. The skidding model is merged into a mixed EHL model which can be used as a dynamic tool to analyze the lubricating performance considering the round corner, skidding and roughness.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2018

Han Qing, LiangXi Xie, Lu Li and Chuang Jia

This paper aims to establish a numerical model to calculate contact pressure for rectangular vane sealing surface of hydraulic rotary actuator. Numerical model can be applied to…

126

Abstract

Purpose

This paper aims to establish a numerical model to calculate contact pressure for rectangular vane sealing surface of hydraulic rotary actuator. Numerical model can be applied to solve the steady-state Reynolds equation after the oil film thickness and the contact pressure distribution curve of the vane sealing surface are obtained.

Design/methodology/approach

The authors established the numerical model of contact pressure base on the theory of elastic after, the Reynolds equation is solved by the inverse solution.

Findings

The relationship between the oil film thickness of vane sealing surface and the contact pressure on different sealing location for hydraulic rotary actuator is obtained. At the same time, the lubrication state on the surface of seal is also found when the hydraulic rotary actuator runs stably.

Originality/value

The study shows that the lubricating state of the vane sealing surface is mixed lubrication, when the rotor of the hydraulic rotary actuator is running stably at a certain speed. Meanwhile, this research will provide a theory basis for later experiment for the hydraulic rotary vane actuator.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 1998

J.M. Khodadadi

A computational methodology, based on the coupling of the finite element and boundary element methods, is developed for the solution of magnetothermal problems. The finite element…

Abstract

A computational methodology, based on the coupling of the finite element and boundary element methods, is developed for the solution of magnetothermal problems. The finite element formulation and boundary element formulation, along with their coupling, are discussed. The coupling procedure is also presented, which entails the application of the LU decomposition to eliminate the need for the direct inversion of matrices resulting from FE‐BE formulation, thereby saving computation time and storage space. Corners for both FE‐BE interface and BE regions, where discontinuous fluxes exist, are treated using the double flux concept. Numerical results are presented for three different systems and compared with analytical solutions when available. Numerical experiments suggest that for magnetothermal problems involving small skin depths, a careful mesh distribution is critical for accurate prediction of the field variables of interest. It is found that the accuracy of the temperature distribution is strongly dependent upon that of the magnetic vector potential. A small error in the magnetic vector potential can produce significant errors in the subsequent temperature calculations. Thus, particular attention must be paid to the design of a suitable mesh for the accurate prediction of vector potentials. From all the cases examined, 4‐node linear elements with adequate progressive coarsening of meshes from the surface gave the results with best accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2021

Jesús Miguel Chacón, Miguel Ángel Caminero, Pedro José Núñez, Eustaquio García-Plaza and Jean Paul Bécar

Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) technologies due to its ability to build thermoplastic parts with complex geometries at low…

Abstract

Purpose

Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) technologies due to its ability to build thermoplastic parts with complex geometries at low cost. The FFF technique has been mainly used for rapid prototyping owing to the poor mechanical and geometrical properties of pure thermoplastic parts. However, both the development of new fibre-reinforced filaments with improved mechanical properties, and more accurate composite 3D printers have broadened the scope of FFF applications to functional components. FFF is a complex process with a large number of parameters influencing product quality and mechanical properties, and the effects of the combined parameters are usually difficult to evaluate. An array of parameter combinations has been analysed for improving the mechanical performance of thermoplastic parts such as layer thickness, build orientation, raster angle, raster width, air gap, infill density and pattern, fibre volume fraction, fibre layer location, fibre orientation and feed rate. This study aims to assess the effects of nozzle diameter on the mechanical performance and the geometric properties of 3D printed short carbon fibre-reinforced composites processed by the FFF technique.

Design methodology approach

Tensile and three-point bending tests were performed to characterise the mechanical response of the 3D printed composite samples. The dimensional accuracy, the flatness error and surface roughness of the printed specimens were also evaluated. Moreover, manufacturing costs, which are related to printing time, were evaluated. Finally, scanning electron microscopy images of the printed samples were analysed to estimate the porosity as a function of the nozzle diameter and to justify the effect of nozzle diameter on dimensional accuracy and surface roughness.

Findings

The effect of nozzle diameter on the mechanical and geometric quality of 3D printed composite samples was significant. In addition, large nozzle diameters tended to increase mechanical performance and enhance surface roughness, with a reduction in manufacturing costs. In contrast, 3D printed composite samples with small nozzle diameter exhibited higher geometric accuracy. However, the effect of nozzle diameter on the flatness error and surface roughness was of slight significance. Finally, some print guidelines are included.

Originality value

The effect of nozzle diameter, which is directly related to product quality and manufacturing costs, has not been extensively studied. The presented study provides more information regarding the dependence of the mechanical, microstructural and geometric properties of short carbon fibre-reinforced nylon composite components on nozzle diameter.

1 – 10 of over 4000