Search results

1 – 10 of over 1000
Article
Publication date: 13 May 2024

Qiang Yang, Tianfei Xia, Lijia Zhang, Ziye Zhou, Dequan Guo, Ao Gu, Xucai Zeng and Ping Wang

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an…

Abstract

Purpose

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an energy transportation tool for urban industrial production and social life, which is closely related to urban safety. Preventing the occurrence of urban gas pipeline transportation accidents and carrying out pipeline defect detection are of great significance for the urban economic and social stability. To perform pipeline defect detection, the magnetic flux leakage internal detection method is generally used in the detection of large-diameter long-distance oil and gas pipelines. However, in terms of the internal detection of small-diameter pipelines, due to the heavy weight, large structure of the detection device and small pipe diameter, the detection is more difficult.

Design/methodology/approach

In order to solve the above matters, self-made three-dimensional magnetic sensor and three-dimensional magnetic flux leakage imaging direct method are proposed for studying the defect identification. Firstly, for adapting to the diameter range of small-diameter pipelines, and containing the complete information of the defect, a self-made three-dimensional magnetic sensor is made in this paper to improve the accuracy of magnetic flux leakage detection. And on the basis of it, a small diameter pipeline defect detection system is built. Secondly, as detection signal may be affected by background magnetic field interference and the jitter interference, the complete ensemble empirical mode decomposition with adaptive noise method is utilized to screen the detected signal. As a result, the useful signal is reconstructed and the interference signal is removed. Finally, the defect contour inversion imaging of detection is realized based on the direct method of three-dimensional magnetic flux leakage imaging, which includes three-dimensional magnetic flux leakage detection data and data segmentation recognition.

Findings

The three-dimensional magnetic flux leakage imaging experimental results shown that, compared to the actual defects, the typical defects, irregular defects and crack groove defects can be analyzed by the magnetic flux leakage defect contour imaging method in qualitative and quantitative way respectively, which provides a new idea for the research of defect recognition.

Originality/value

A three-dimensional magnetic sensor is made to adapt the diameter range of small diameter pipeline, and based on it, a small-diameter pipeline defect detection system is built to collect and display the magnetic flux leakage signal.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1200

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 April 2023

Vishva Payghode, Ayush Goyal, Anupama Bhan, Sailesh Suryanarayan Iyer and Ashwani Kumar Dubey

This paper aims to implement and extend the You Only Live Once (YOLO) algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural…

Abstract

Purpose

This paper aims to implement and extend the You Only Live Once (YOLO) algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural network once to detect the objects in an image, which is why it is powerful and fast. Cameras are found at many different crossroads and locations, but video processing of the feed through an object detection algorithm allows determining and tracking what is captured. Video Surveillance has many applications such as Car Tracking and tracking of people related to crime prevention. This paper provides exhaustive comparison between the existing methods and proposed method. Proposed method is found to have highest object detection accuracy.

Design/methodology/approach

The goal of this research is to develop a deep learning framework to automate the task of analyzing video footage through object detection in images. This framework processes video feed or image frames from CCTV, webcam or a DroidCam, which allows the camera in a mobile phone to be used as a webcam for a laptop. The object detection algorithm, with its model trained on a large data set of images, is able to load in each image given as an input, process the image and determine the categories of the matching objects that it finds. As a proof of concept, this research demonstrates the algorithm on images of several different objects. This research implements and extends the YOLO algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural network once to detect the objects in an image, which is why it is powerful and fast. Cameras are found at many different crossroads and locations, but video processing of the feed through an object detection algorithm allows determining and tracking what is captured. For video surveillance of traffic cameras, this has many applications, such as car tracking and person tracking for crime prevention. In this research, the implemented algorithm with the proposed methodology is compared against several different prior existing methods in literature. The proposed method was found to have the highest object detection accuracy for object detection and activity recognition, better than other existing methods.

Findings

The results indicate that the proposed deep learning–based model can be implemented in real-time for object detection and activity recognition. The added features of car crash detection, fall detection and social distancing detection can be used to implement a real-time video surveillance system that can help save lives and protect people. Such a real-time video surveillance system could be installed at street and traffic cameras and in CCTV systems. When this system would detect a car crash or a fatal human or pedestrian fall with injury, it can be programmed to send automatic messages to the nearest local police, emergency and fire stations. When this system would detect a social distancing violation, it can be programmed to inform the local authorities or sound an alarm with a warning message to alert the public to maintain their distance and avoid spreading their aerosol particles that may cause the spread of viruses, including the COVID-19 virus.

Originality/value

This paper proposes an improved and augmented version of the YOLOv3 model that has been extended to perform activity recognition, such as car crash detection, human fall detection and social distancing detection. The proposed model is based on a deep learning convolutional neural network model used to detect objects in images. The model is trained using the widely used and publicly available Common Objects in Context data set. The proposed model, being an extension of YOLO, can be implemented for real-time object and activity recognition. The proposed model had higher accuracies for both large-scale and all-scale object detection. This proposed model also exceeded all the other previous methods that were compared in extending and augmenting the object detection to activity recognition. The proposed model resulted in the highest accuracy for car crash detection, fall detection and social distancing detection.

Details

International Journal of Web Information Systems, vol. 19 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 28 December 2023

Ankang Ji, Xiaolong Xue, Limao Zhang, Xiaowei Luo and Qingpeng Man

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack…

Abstract

Purpose

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack contributes to establishing an appropriate road maintenance and repair strategy from the promptly informed managers but still remaining a significant challenge. This research seeks to propose practical solutions for targeting the automatic crack detection from images with efficient productivity and cost-effectiveness, thereby improving the pavement performance.

Design/methodology/approach

This research applies a novel deep learning method named TransUnet for crack detection, which is structured based on Transformer, combined with convolutional neural networks as encoder by leveraging a global self-attention mechanism to better extract features for enhancing automatic identification. Afterward, the detected cracks are used to quantify morphological features from five indicators, such as length, mean width, maximum width, area and ratio. Those analyses can provide valuable information for engineers to assess the pavement condition with efficient productivity.

Findings

In the training process, the TransUnet is fed by a crack dataset generated by the data augmentation with a resolution of 224 × 224 pixels. Subsequently, a test set containing 80 new images is used for crack detection task based on the best selected TransUnet with a learning rate of 0.01 and a batch size of 1, achieving an accuracy of 0.8927, a precision of 0.8813, a recall of 0.8904, an F1-measure and dice of 0.8813, and a Mean Intersection over Union of 0.8082, respectively. Comparisons with several state-of-the-art methods indicate that the developed approach in this research outperforms with greater efficiency and higher reliability.

Originality/value

The developed approach combines TransUnet with an integrated quantification algorithm for crack detection and quantification, performing excellently in terms of comparisons and evaluation metrics, which can provide solutions with potentially serving as the basis for an automated, cost-effective pavement condition assessment scheme.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 July 2023

Luya Yang, Xinbo Huang, Yucheng Ren, Qi Han and Yanchen Huang

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted…

Abstract

Purpose

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted surfaces on the surface of steel plate, which will not only affect the corrosion resistance, wear resistance and fatigue strength of steel plate but also may cause production accidents. Therefore, the detection of steel plate surface defect must be strengthened to ensure the production quality of steel plate and the smooth development of industrial construction.

Design/methodology/approach

(1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved Multi-Scale Retinex (MSR) enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Findings

When applied to small dataset, the precision of the proposed method is 94.5% and the time is 23.7 ms. In order to compare with deep learning technology, after expanding the image dataset, the precision and detection time of this paper are 0.948 and 24.2 ms, respectively. The proposed method is superior to other traditional image processing and deep learning methods. And the field recognition precision is 91.7%.

Originality/value

In brief, the steel plate surface defect detection technology based on computer vision is effective, but the previous attempts and methods are not comprehensive and the accuracy and detection speed need to be improved. Therefore, a more practical and comprehensive technology is developed in this paper. The main contributions are as follows: (1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved MSR enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 November 2022

Aslan Ahmet Haykir and Ilkay Oksuz

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way…

114

Abstract

Purpose

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way to increase the image resolution, and super-resolved images contain more information compared to their low-resolution counterparts. The purpose of this study is analyzing the effects of the super resolution models trained before on object detection for aerial images.

Design/methodology/approach

Two different models were trained using the Super-Resolution Generative Adversarial Network (SRGAN) architecture on two aerial image data sets, the xView and the Dataset for Object deTection in Aerial images (DOTA). This study uses these models to increase the resolution of aerial images for improving object detection performance. This study analyzes the effects of the model with the best perceptual index (PI) and the model with the best RMSE on object detection in detail.

Findings

Super-resolution increases the object detection quality as expected. But, the super-resolution model with better perceptual quality achieves lower mean average precision results compared to the model with better RMSE. It means that the model with a better PI is more meaningful to human perception but less meaningful to computer vision.

Originality/value

The contributions of the authors to the literature are threefold. First, they do a wide analysis of SRGAN results for aerial image super-resolution on the task of object detection. Second, they compare super-resolution models with best PI and best RMSE to showcase the differences on object detection performance as a downstream task first time in the literature. Finally, they use a transfer learning approach for super-resolution to improve the performance of object detection.

Details

Information Discovery and Delivery, vol. 51 no. 4
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 2 May 2024

Mikias Gugssa, Long Li, Lina Pu, Ali Gurbuz, Yu Luo and Jun Wang

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However…

Abstract

Purpose

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However, it is still challenging to implement automated safety monitoring methods in near real time or in a time-efficient manner in real construction practices. Therefore, this study developed a novel solution to enhance the time efficiency to achieve near-real-time safety glove detection and meanwhile preserve data privacy.

Design/methodology/approach

The developed method comprises two primary components: (1) transfer learning methods to detect safety gloves and (2) edge computing to improve time efficiency and data privacy. To compare the developed edge computing-based method with the currently widely used cloud computing-based methods, a comprehensive comparative analysis was conducted from both the implementation and theory perspectives, providing insights into the developed approach’s performance.

Findings

Three DL models achieved mean average precision (mAP) scores ranging from 74.92% to 84.31% for safety glove detection. The other two methods by combining object detection and classification achieved mAP as 89.91% for hand detection and 100% for glove classification. From both implementation and theory perspectives, the edge computing-based method detected gloves faster than the cloud computing-based method. The edge computing-based method achieved a detection latency of 36%–68% shorter than the cloud computing-based method in the implementation perspective. The findings highlight edge computing’s potential for near-real-time detection with improved data privacy.

Originality/value

This study implemented and evaluated DL-based safety monitoring methods on different computing infrastructures to investigate their time efficiency. This study contributes to existing knowledge by demonstrating how edge computing can be used with DL models (without sacrificing their performance) to improve PPE-glove monitoring in a time-efficient manner as well as maintain data privacy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 May 2023

Chunhua Liu, Ming Li, Peng Chen and Chaoyun Zhang

This study aims to solve the problems of ambiguous localization, large calculation, poor real-time and limited applicability of bolt thread defect detection.

Abstract

Purpose

This study aims to solve the problems of ambiguous localization, large calculation, poor real-time and limited applicability of bolt thread defect detection.

Design/methodology/approach

First, the acquired ultrasound image is used to acquire the larger area of the image, which is set as the compliant threaded area. Second, based on the determined coordinates of the center point in each selected region, the set of coordinates on the left and right sides of the bolts is acquired by DBSCAN method with parameters eps and MinPts, which is determined by data set dimension D and the k-distance curve. Finally, the defect detection boundary line fitting is completed using the acquired coordinate set, and the relationship between the distance from each detection point to the curve and d, which is obtained from the measurement of the standard bolt sample with known thread defect, is used to locate the bolt thread defect simultaneously.

Findings

In this paper, the bolt thread defect detection method with ultrasonic image is proposed; meanwhile, the ultrasonic image acquisition system is designed to complete the real-time localization of bolt thread defects.

Originality/value

The detection results show that the method can effectively detect bolt thread defects and locate the bolt thread defect location with wide applicability, small calculation and good real-time performance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 1000