Search results

1 – 10 of over 11000
Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1178

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 July 2021

Gang Li, Yongqiang Chen, Jian Zhou, Xuan Zheng and Xue Li

Periodic inspection and maintenance are essential for effective pavement preservation. Cracks not only affect the appearance of the road and reduce the levelness, but also shorten…

Abstract

Purpose

Periodic inspection and maintenance are essential for effective pavement preservation. Cracks not only affect the appearance of the road and reduce the levelness, but also shorten the life of road. However, traditional road crack detection methods based on manual investigations and image processing are costly, inefficiency and unreliable. The research aims to replace the traditional road crack detection method and further improve the detection effect.

Design/methodology/approach

In this paper, a crack detection method based on matrix network fusing corner-based detection and segmentation network is proposed to effectively identify cracks. The method combines ResNet 152 with matrix network as the backbone network to achieve feature reuse of the crack. The crack region is identified by corners, and segmentation network is constructed to extract the crack. Finally, parameters such as the length and width of the cracks were calculated from the geometric characteristics of the cracks and the relative errors with the actual values were 4.23 and 6.98% respectively.

Findings

To improve the accuracy of crack detection, the model was optimized with the Adam algorithm and mixed with two publicly available datasets for model training and testing and compared with various methods. The results show that the detection performance of our method is better than many excellent algorithms, and the anti-interference ability is strong.

Originality/value

This paper proposed a new type of road crack detection method. The detection effect is better than a variety of detection algorithms and has strong anti-interference ability, which can completely replace traditional crack detection methods and meet engineering needs.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2023

Vishva Payghode, Ayush Goyal, Anupama Bhan, Sailesh Suryanarayan Iyer and Ashwani Kumar Dubey

This paper aims to implement and extend the You Only Live Once (YOLO) algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural…

Abstract

Purpose

This paper aims to implement and extend the You Only Live Once (YOLO) algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural network once to detect the objects in an image, which is why it is powerful and fast. Cameras are found at many different crossroads and locations, but video processing of the feed through an object detection algorithm allows determining and tracking what is captured. Video Surveillance has many applications such as Car Tracking and tracking of people related to crime prevention. This paper provides exhaustive comparison between the existing methods and proposed method. Proposed method is found to have highest object detection accuracy.

Design/methodology/approach

The goal of this research is to develop a deep learning framework to automate the task of analyzing video footage through object detection in images. This framework processes video feed or image frames from CCTV, webcam or a DroidCam, which allows the camera in a mobile phone to be used as a webcam for a laptop. The object detection algorithm, with its model trained on a large data set of images, is able to load in each image given as an input, process the image and determine the categories of the matching objects that it finds. As a proof of concept, this research demonstrates the algorithm on images of several different objects. This research implements and extends the YOLO algorithm for detection of objects and activities. The advantage of YOLO is that it only runs a neural network once to detect the objects in an image, which is why it is powerful and fast. Cameras are found at many different crossroads and locations, but video processing of the feed through an object detection algorithm allows determining and tracking what is captured. For video surveillance of traffic cameras, this has many applications, such as car tracking and person tracking for crime prevention. In this research, the implemented algorithm with the proposed methodology is compared against several different prior existing methods in literature. The proposed method was found to have the highest object detection accuracy for object detection and activity recognition, better than other existing methods.

Findings

The results indicate that the proposed deep learning–based model can be implemented in real-time for object detection and activity recognition. The added features of car crash detection, fall detection and social distancing detection can be used to implement a real-time video surveillance system that can help save lives and protect people. Such a real-time video surveillance system could be installed at street and traffic cameras and in CCTV systems. When this system would detect a car crash or a fatal human or pedestrian fall with injury, it can be programmed to send automatic messages to the nearest local police, emergency and fire stations. When this system would detect a social distancing violation, it can be programmed to inform the local authorities or sound an alarm with a warning message to alert the public to maintain their distance and avoid spreading their aerosol particles that may cause the spread of viruses, including the COVID-19 virus.

Originality/value

This paper proposes an improved and augmented version of the YOLOv3 model that has been extended to perform activity recognition, such as car crash detection, human fall detection and social distancing detection. The proposed model is based on a deep learning convolutional neural network model used to detect objects in images. The model is trained using the widely used and publicly available Common Objects in Context data set. The proposed model, being an extension of YOLO, can be implemented for real-time object and activity recognition. The proposed model had higher accuracies for both large-scale and all-scale object detection. This proposed model also exceeded all the other previous methods that were compared in extending and augmenting the object detection to activity recognition. The proposed model resulted in the highest accuracy for car crash detection, fall detection and social distancing detection.

Details

International Journal of Web Information Systems, vol. 19 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 28 December 2023

Ankang Ji, Xiaolong Xue, Limao Zhang, Xiaowei Luo and Qingpeng Man

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack…

Abstract

Purpose

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack contributes to establishing an appropriate road maintenance and repair strategy from the promptly informed managers but still remaining a significant challenge. This research seeks to propose practical solutions for targeting the automatic crack detection from images with efficient productivity and cost-effectiveness, thereby improving the pavement performance.

Design/methodology/approach

This research applies a novel deep learning method named TransUnet for crack detection, which is structured based on Transformer, combined with convolutional neural networks as encoder by leveraging a global self-attention mechanism to better extract features for enhancing automatic identification. Afterward, the detected cracks are used to quantify morphological features from five indicators, such as length, mean width, maximum width, area and ratio. Those analyses can provide valuable information for engineers to assess the pavement condition with efficient productivity.

Findings

In the training process, the TransUnet is fed by a crack dataset generated by the data augmentation with a resolution of 224 × 224 pixels. Subsequently, a test set containing 80 new images is used for crack detection task based on the best selected TransUnet with a learning rate of 0.01 and a batch size of 1, achieving an accuracy of 0.8927, a precision of 0.8813, a recall of 0.8904, an F1-measure and dice of 0.8813, and a Mean Intersection over Union of 0.8082, respectively. Comparisons with several state-of-the-art methods indicate that the developed approach in this research outperforms with greater efficiency and higher reliability.

Originality/value

The developed approach combines TransUnet with an integrated quantification algorithm for crack detection and quantification, performing excellently in terms of comparisons and evaluation metrics, which can provide solutions with potentially serving as the basis for an automated, cost-effective pavement condition assessment scheme.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 July 2023

Luya Yang, Xinbo Huang, Yucheng Ren, Qi Han and Yanchen Huang

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted…

Abstract

Purpose

In the process of continuous casting and rolling of steel plate, due to the influence of rolling equipment and process, there are scratches, inclusions, patches, scabs and pitted surfaces on the surface of steel plate, which will not only affect the corrosion resistance, wear resistance and fatigue strength of steel plate but also may cause production accidents. Therefore, the detection of steel plate surface defect must be strengthened to ensure the production quality of steel plate and the smooth development of industrial construction.

Design/methodology/approach

(1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved Multi-Scale Retinex (MSR) enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Findings

When applied to small dataset, the precision of the proposed method is 94.5% and the time is 23.7 ms. In order to compare with deep learning technology, after expanding the image dataset, the precision and detection time of this paper are 0.948 and 24.2 ms, respectively. The proposed method is superior to other traditional image processing and deep learning methods. And the field recognition precision is 91.7%.

Originality/value

In brief, the steel plate surface defect detection technology based on computer vision is effective, but the previous attempts and methods are not comprehensive and the accuracy and detection speed need to be improved. Therefore, a more practical and comprehensive technology is developed in this paper. The main contributions are as follows: (1) A steel plate surface defect detection technology based on small datasets is proposed, which can detect multiple surface defects and fill in the blank of scab defect detection. (2) A detection system based on intelligent recognition technology is built. The steel plate images are collected by the front-end monitoring device, then transmitted to the back-end monitoring center and processed by the embedded intelligent algorithms. (3) In order to reduce the impact of external light on the image, an improved MSR enhancement algorithm based on adaptive weight calculation is proposed, which lays the foundation for subsequent object segmentation and feature extraction. (4) According to the different factors such as the cause and shape, the texture and shape features are combined to classify different defects on the steel plate surface. The defect classification model is constructed and the classification results are recorded and stored, which has certain application value in the field of steel plate surface defect detection. (5) The practicability and effectiveness of the proposed method are verified by comparison with other methods, and the field running tests are conducted based on the equipment commissioning field of China Heavy Machinery Institute.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 November 2022

Aslan Ahmet Haykir and Ilkay Oksuz

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way…

109

Abstract

Purpose

Data quality and data resolution are essential for computer vision tasks like medical image processing, object detection, pattern recognition and so on. Super-resolution is a way to increase the image resolution, and super-resolved images contain more information compared to their low-resolution counterparts. The purpose of this study is analyzing the effects of the super resolution models trained before on object detection for aerial images.

Design/methodology/approach

Two different models were trained using the Super-Resolution Generative Adversarial Network (SRGAN) architecture on two aerial image data sets, the xView and the Dataset for Object deTection in Aerial images (DOTA). This study uses these models to increase the resolution of aerial images for improving object detection performance. This study analyzes the effects of the model with the best perceptual index (PI) and the model with the best RMSE on object detection in detail.

Findings

Super-resolution increases the object detection quality as expected. But, the super-resolution model with better perceptual quality achieves lower mean average precision results compared to the model with better RMSE. It means that the model with a better PI is more meaningful to human perception but less meaningful to computer vision.

Originality/value

The contributions of the authors to the literature are threefold. First, they do a wide analysis of SRGAN results for aerial image super-resolution on the task of object detection. Second, they compare super-resolution models with best PI and best RMSE to showcase the differences on object detection performance as a downstream task first time in the literature. Finally, they use a transfer learning approach for super-resolution to improve the performance of object detection.

Details

Information Discovery and Delivery, vol. 51 no. 4
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 2 February 2021

Lukman E. Mansuri and D.A. Patel

Heritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many…

1204

Abstract

Purpose

Heritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.

Design/methodology/approach

The artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”

Findings

This study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.

Practical implications

The study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.

Originality/value

For ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 June 2021

Zhoufeng Liu, Shanliang Liu, Chunlei Li and Bicao Li

This paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep…

Abstract

Purpose

This paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep learning-based, which incurs some additional problems: (1) The model is difficult to train due to too few fabric datasets for the difficulty of collecting pictures; (2) The detection accuracy of existing methods is insufficient to implement in the industrial field. This study intends to propose a new method which can be applied to fabric defect detection in the industrial field.

Design/methodology/approach

To cope with exist fabric defect detection problems, the article proposes a novel fabric defect detection method based on multi-source feature fusion. In the training process, both layer features and source model information are fused to enhance robustness and accuracy. Additionally, a novel training model called multi-source feature fusion (MSFF) is proposed to tackle the limited samples and demand to obtain fleet and precise quantification automatically.

Findings

The paper provides a novel fabric defect detection method, experimental results demonstrate that the proposed method achieves an AP of 93.9 and 98.8% when applied to the TILDA(a public dataset) and ZYFD datasets (a real-shot dataset), respectively, and outperforms 5.9% than fine-tuned SSD (single shot multi-box detector).

Research limitations/implications

Our proposed algorithm can provide a promising tool for fabric defect detection.

Practical implications

The paper includes implications for the development of a powerful brand image, the development of “brand ambassadors” and for managing the balance between stability and change.

Social implications

This work provides technical support for real-time detection on industrial sites, advances the process of intelligent manual detection of fabric defects and provides a technical reference for object detection on other industrial

Originality/value

Therefore, our proposed algorithm can provide a promising tool for fabric defect detection.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 May 2021

Chang Liu, Samad M.E. Sepasgozar, Sara Shirowzhan and Gelareh Mohammadi

The practice of artificial intelligence (AI) is increasingly being promoted by technology developers. However, its adoption rate is still reported as low in the construction…

1017

Abstract

Purpose

The practice of artificial intelligence (AI) is increasingly being promoted by technology developers. However, its adoption rate is still reported as low in the construction industry due to a lack of expertise and the limited reliable applications for AI technology. Hence, this paper aims to present the detailed outcome of experimentations evaluating the applicability and the performance of AI object detection algorithms for construction modular object detection.

Design/methodology/approach

This paper provides a thorough evaluation of two deep learning algorithms for object detection, including the faster region-based convolutional neural network (faster RCNN) and single shot multi-box detector (SSD). Two types of metrics are also presented; first, the average recall and mean average precision by image pixels; second, the recall and precision by counting. To conduct the experiments using the selected algorithms, four infrastructure and building construction sites are chosen to collect the required data, including a total of 990 images of three different but common modular objects, including modular panels, safety barricades and site fences.

Findings

The results of the comprehensive evaluation of the algorithms show that the performance of faster RCNN and SSD depends on the context that detection occurs. Indeed, surrounding objects and the backgrounds of the objects affect the level of accuracy obtained from the AI analysis and may particularly effect precision and recall. The analysis of loss lines shows that the loss lines for selected objects depend on both their geometry and the image background. The results on selected objects show that faster RCNN offers higher accuracy than SSD for detection of selected objects.

Research limitations/implications

The results show that modular object detection is crucial in construction for the achievement of the required information for project quality and safety objectives. The detection process can significantly improve monitoring object installation progress in an accurate and machine-based manner avoiding human errors. The results of this paper are limited to three construction sites, but future investigations can cover more tasks or objects from different construction sites in a fully automated manner.

Originality/value

This paper’s originality lies in offering new AI applications in modular construction, using a large first-hand data set collected from three construction sites. Furthermore, the paper presents the scientific evaluation results of implementing recent object detection algorithms across a set of extended metrics using the original training and validation data sets to improve the generalisability of the experimentation. This paper also provides the practitioners and scholars with a workflow on AI applications in the modular context and the first-hand referencing data.

1 – 10 of over 11000