Search results

1 – 2 of 2
Article
Publication date: 7 September 2015

Igor V Miroshnichenko and M A Sheremet

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive…

Abstract

Purpose

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive variables like stream function and vorticity.

Design/methodology/approach

The governing equations formulated in dimensionless variables “stream function, vorticity and temperature,” within the Boussinesq approach taking into account the standard two equation k-ε turbulence model with physical boundary conditions have been solved using an iterative implicit finite-difference method.

Findings

It has been found that using of the presented algebraic transformation of the mesh allows to effectively conduct numerical analysis of turbulent natural convection with thermal surface radiation. It has been shown that the average convective Nusselt number increases with the Rayleigh number and decreases with the surface emissivity, while the average radiative Nusselt number is an increasing function of these key parameters. It has been shown that a presence of surface thermal radiation effect leads to an expansion of the eddy viscosity zones close to the walls.

Originality/value

It should be noted that for the first time in this paper we used stream function and vorticity variables with very effective algebraic transformation of the mesh in order to create a non-uniform mesh for an analysis of turbulent flow. Such method allows to reduce the computational time essentially in comparison with using of the primitive variables. The considered method has been successfully validated on the basis of the experimental and numerical data of other authors in case of turbulent natural convection without thermal radiation. The used numerical method would benefit scientists and engineers to become familiar with the analysis of turbulent convective heat and mass transfer, and the way to predict the properties of the turbulent flow in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2018

Igor Miroshnichenko, Mikhail Sheremet and Ali J. Chamkha

The purpose of this paper is to conduct a numerical analysis of transient turbulent natural convection combined with surface thermal radiation in a square cavity with a local…

Abstract

Purpose

The purpose of this paper is to conduct a numerical analysis of transient turbulent natural convection combined with surface thermal radiation in a square cavity with a local heater.

Design/methodology/approach

The domain of interest includes the air-filled cavity with cold vertical walls, adiabatic horizontal walls and isothermal heater located on the bottom cavity wall. It is assumed in the analysis that the thermophysical properties of the fluid are independent of temperature and the flow is turbulent. Surface thermal radiation is considered for more accurate analysis of the complex heat transfer inside the cavity. The governing equations have been discretized using the finite difference method with the non-uniform grid on the basis of the special algebraic transformation. Turbulence was modeled using the kε model. Simulations have been carried out for different values of the Rayleigh number, surface emissivity and location of the heater.

Findings

It has been found that the presence of surface radiation leads to both an increase in the average total Nusselt number and intensive cooling of such type of system. A significant intensification of convective flow was also observed owing to an increase in the Rayleigh number. It should be noted that a displacement of the heater from central part of the bottom wall leads to significant modification of the thermal plume and flow pattern inside the cavity.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady turbulent natural convection combined with surface thermal radiation in a square air-filled cavity in the presence of a local isothermal heater. The results would benefit scientists and engineers to become familiar with the analysis of turbulent convective–radiative heat transfer in enclosures with local heaters, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2