Search results

1 – 7 of 7
Article
Publication date: 24 June 2020

Snehashis Pal, Gorazd Lojen, Nenad Gubeljak, Vanja Kokol and Igor Drstvensek

Melting, fusion and solidification are the principal mechanisms used in selective laser melting to produce a product. Several thermal phenomena occur during the fabrication…

Abstract

Purpose

Melting, fusion and solidification are the principal mechanisms used in selective laser melting to produce a product. Several thermal phenomena occur during the fabrication process, such as powder melting, melt pool formation, mixing of materials (fusion), rapid solidification, re-melting, high thermal gradient, reheating and cooling. These phenomena result in several types of pores, defects, irregular surfaces, bending and residual stress. This paper aims to focus on the physical behaviors of Ti-6Al-4V alloy at several scanning speeds and their effect on porosity and metallurgical properties.

Design/methodology/approach

Seven scanning speeds between 150  and 1000 mm/s were chosen to observe the occurrence of different pores, defects and microstructural formations and their effect on hardness and tensile properties.

Findings

The various mentioned malformations occur due to the results of possible uncertainties during the melting-fusion-solidification process. Size, shape, number, location and content of the pores varied in different samples. The a cicular a' size changes with different scanning speeds. Eventually, both porosity and microstructure have shown influential consequences on the hardness and tensile properties in the samples manufactured with different scanning speeds.

Originality/value

This study showed the adverse effects of different physical behaviors that occurred during the fabrication process, leading to the formation of complex pores. The causations and plausible solutions of the pore formation are interpreted in this paper. The authors observe that a circular a' size differed with scanning speeds, and these influence the mechanical properties.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 December 2018

Tomaz Brajlih, Urska Kostevsek and Igor Drstvensek

One of the main problems of selective laser sintering (SLS) manufacturing process is the dimensional accuracy of products. Main causes of dimensional deviations are material…

Abstract

Purpose

One of the main problems of selective laser sintering (SLS) manufacturing process is the dimensional accuracy of products. Main causes of dimensional deviations are material shrinkage and size of laser heat affected zone (LHAZ). This paper aims to present a new method of adapting SLS manufacturing shrinkage and LHAZ compensation parameters to the geometrical characteristics of processed parts to improve their accuracy.

Design/methodology/approach

The first part of this work presents a hypothesis asserting that the shrinkage and the LHAZ size depend on geometrical properties of products. A method that defines geometrical properties by numerical influence factors is described in the continuation. A multi-factorial experiment with adaptable test part is set up. Then, test builds are manufactured on an SLS machine and measured with a three-dimensional optical scanner. Afterwards, the results are analysed in relation to the presumed hypothesis.

Findings

The analysis of variance of multi-factorial experiment proves the hypothesis and the influence of the geometrical properties on the accuracy of the SLS manufacturing process. Afterwards, a part is manufactured with adapted values of compensation parameters and the archived accuracy is discussed.

Research limitations/implications

Presented research is limited on a single SLS material. Also, some numerical factors are directly linked to the build volume dimensions of the SLS machine that was used in the experiment. However, results can be generalised and some guidelines for shrinkage and LHAZ compensation method are presented. Also, some guidelines for future research are proposed.

Practical implications

Based on the presented results, it can be determined that using constant shrinkage and LHAZ values on an SLS machine will not yield the same results in terms of accuracy if the geometrical properties of parts change significantly.

Social implications

By correctly adapting compensation values, the overall achievable accuracy of the SLS process can be achieved, enabling a more reliable production of mass-customised end-user parts such as customised medical accessories and devices for example.

Originality/value

A similar method of numerically describing geometrical properties of part in regard to SLS and directly adapting shrinkage and LHAZ compensation values to them for every individual build has not yet been proposed.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2018

Urska Kostevsek, Tomaz Brajlih, Joze Balic, Žiga Kadivnik and Igor Drstvensek

Fixed structures in prosthetic dentistry are highly customized products, manufactured individually for patients who have missing teeth. When choosing the technology for fixed…

Abstract

Purpose

Fixed structures in prosthetic dentistry are highly customized products, manufactured individually for patients who have missing teeth. When choosing the technology for fixed dental structure manufacturing, three viable options are available (precise casting, milling and selective laser melting [SLM]). All these technologies can be used to produce a dental structure from CoCr alloy. Besides materials and availability of technologies, economic efficiency is an important factor when choosing a production method. The purpose of this study is to develop an estimation model for achievable productivity of selective laser melting and compare the results with the productivity of conventional manufacturing.

Design/methodology/approach

Results presented in this paper are based on manufacturing time analysis of an individual case with each of the technologies mentioned above. Because of the efficiency of SLM is highly dependent on how efficiently the work space of the machine is used, this issue was also included in the research. Data used for research were acquired from practical use of each technology in dental applications.

Findings

Analysis of achievable SLM manufacturing speeds is based on the previous research into manufacturing speeds of additive manufacturing technologies. The presented results present a model that can be used to estimate the productivity of the SLM technology.

Research limitations/implications

Research was limited to a specific SLM machine type with a fixed workspace volume. Nevertheless, the results show that any SLM machine has to be used as efficiently as possible to be able to be competitive regarding the conventional manufacturing technologies.

Practical implications

The presented results show clearly at least a rough estimation of what kind of parts and in what volume will be manufactured with an SLM machine prior to buying one.

Social implications

Results can help to widen the economically efficient way of running SLM machines, replacing conventional manufacturing for medical applications especially with complicated cases.

Originality/value

A method is presented to adapt the estimation model to a particular real-life production scenario. This method can be used to establish how efficiently selective laser sintering can be used and if using SLM machine instead of conventional manufacturing would be economically viable.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2016

Tomaz Brajlih, Matej Paulic, Tomaz Irgolic, Ziga Kadivnik, Joze Balic and Igor Drstvensek

This paper aims to present a comparison between selective laser sintering and injection moulding technology for the production of small batches of plastic products.

Abstract

Purpose

This paper aims to present a comparison between selective laser sintering and injection moulding technology for the production of small batches of plastic products.

Design/methodology/approach

The comparison is based on analysing the time–cost efficiencies of each manufacturing process regarding the size of the series for the selected product sample. Both technologies are described and the times and costs of those individual processes needed to create a final product are assessed when using each of the manufacturing processes.

Findings

The study shows that the time-cost efficiency of the selected laser sintering technology increases according to the complexity of the product and decreases with increasing series size and product volume.

Research limitations/implications

The study and absolute values of the presented results are limited to a selected plastic product, but the series size-focused efficiency analysis could be expanded to general cases.

Originality/value

The presented analysis could be used as a general guideline for a decision-making process regarding the more efficient manufacturing method. In addition, the results show the viability of using selective laser sintering during the early stages of production when fast product availability is required, regardless of the series size. Also, some complementary effects of using both technologies in the serial production of the same part are discussed.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2011

Tomaz Brajlih, Bogdan Valentan, Joze Balic and Igor Drstvensek

The purpose of this paper is to establish a general method for achievable speed and accuracy evaluation of additive manufacturing (AM) machines and an objective comparison among…

6501

Abstract

Purpose

The purpose of this paper is to establish a general method for achievable speed and accuracy evaluation of additive manufacturing (AM) machines and an objective comparison among them.

Design/methodology/approach

First, a general schematic is defined that enables description of all currently available AM machines. This schematic is used to define two influential factors describing certain parts' properties regarding the machines' yield during manufacturing. A test part is defined, that will enable testing the influence of these factors on the speed and accuracy of manufacturing. A method for implementing and adapting test parts is established for individual machine's testing. This method was used to test four different machines that are predominantly used in Slovenia at the moment.

Findings

Research has proven that the machine's yield had a predominant influence on the achievable manufacturing speeds of all the tested machines. In addition, the results have shown different ranges of achievable manufacturing speeds for individually tested machines. Test parts' measurement results have shown comparable achievable accuracies for all the tested machines.

Research limitations/implications

Speed evaluation is based on a 2k factorial design that assumes the linearity among individual points of the experiment. This design was chosen to keep the method as simple and quick as possible, in order to perform testing on those machines otherwise used in industrial environments. Accuracy evaluation was limited by a rather small sample size of ten fabricated test parts per machine.

Practical implications

The presented evaluation method can be used on any existing or future type of AM machine, and their comparative placement regarding achievable manufacturing speed and accuracy.

Originality/value

The presented method can be used to evaluate a machine regardless of the AM technology on which it is based.

Details

Rapid Prototyping Journal, vol. 17 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 20 October 2014

Ian Campbell

155

Abstract

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Content available
Article
Publication date: 16 January 2009

Ian Gibson

85

Abstract

Details

Rapid Prototyping Journal, vol. 15 no. 1
Type: Research Article
ISSN: 1355-2546

1 – 7 of 7