Search results

1 – 4 of 4
Article
Publication date: 9 May 2023

Dan Wang

This research conducts bibliometric analyses and network mapping on smart libraries worldwide. It examines publication profiles, identifies the most cited publications and…

Abstract

Purpose

This research conducts bibliometric analyses and network mapping on smart libraries worldwide. It examines publication profiles, identifies the most cited publications and preferred sources and considers the cooperation of the authors, organizations and countries worldwide. The research also highlights keyword trends and clusters and finds new developments and emerging trends from the co-cited references network.

Design/methodology/approach

A total of 264 records with 1,200 citations were extracted from the Web of Science database from 2003 to 2021. The trends in the smart library were analyzed and visualized using BibExcel, VOSviewer, Biblioshiny and CiteSpace.

Findings

The People’s Republic of China had the most publications (119), the most citations (374), the highest H-index (12) and the highest total link strength (TLS = 25). Wuhan University had the highest H-index (6). Chiu, Dickson K. W. (H-index = 4, TLS = 22) and Lo, Patrick (H-index = 4, TLS = 21) from the University of Hong Kong had the highest H-indices and were the most cooperative authors. Library Hi Tech was the most preferred journal. “Mobile library” was the most frequently used keyword. “Mobile context” was the largest cluster on the research front.

Research limitations/implications

This study helps librarians, scientists and funders understand smart library trends.

Originality/value

There are several studies and solid background research on smart libraries. However, to the best of the author’s knowledge, this study is the first to conduct bibliometric analyses and network mapping on smart libraries around the globe.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 4 March 2024

Betul Gokkaya, Erisa Karafili, Leonardo Aniello and Basel Halak

The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and…

Abstract

Purpose

The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and their limitations. The security of SCs has received increasing attention from researchers, due to the emerging risks associated with their distributed nature. The increase in risk in SCs comes from threats that are inherently similar regardless of the type of SC, thus, requiring similar defence mechanisms. Being able to identify the types of threats will help developers to build effective defences.

Design/methodology/approach

In this work, we provide an analysis of the threats, possible attacks and traceability solutions for SCs, and highlight outstanding problems. Through a comprehensive literature review (2015–2021), we analysed various SC security solutions, focussing on tracking solutions. In particular, we focus on three types of SCs: digital, food and pharmaceutical that are considered prime targets for cyberattacks. We introduce a systematic categorization of threats and discuss emerging solutions for prevention and mitigation.

Findings

Our study shows that the current traceability solutions for SC systems do not offer a broadened security analysis and fail to provide extensive protection against cyberattacks. Furthermore, global SCs face common challenges, as there are still unresolved issues, especially those related to the increasing SC complexity and interconnectivity, where cyberattacks are spread across suppliers.

Originality/value

This is the first time that a systematic categorization of general threats for SC is made based on an existing threat model for hardware SC.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 13 March 2023

Priyadarshini Das, Srinath Perera, Sepani Senaratne and Robert Osei-Kyei

Industry 4.0 is characterised by systemic transformations occurring exponentially, encompassing an array of dynamic processes and technologies. To move towards a more sustainable…

Abstract

Purpose

Industry 4.0 is characterised by systemic transformations occurring exponentially, encompassing an array of dynamic processes and technologies. To move towards a more sustainable future, it is important to understand the nature of this transformation. However, construction enterprises are experiencing a capacity shortage in identifying the transitional management steps needed to navigate Industry 4.0 better. This paper presents a maturity model with the acronym “Smart Modern Construction Enterprise Maturity Model (SMCeMM)” that provides direction to construction enterprises.

Design/methodology/approach

It adopts an iterative procedure to develop the maturity model. The attributes of Industry 4.0 maturity are obtained through a critical literature review. The model is further developed through knowledge elicitation using modified Delphi-based expert forums and subsequent analysis through qualitative techniques. The conceptual validity of the model is established through a validation expert forum.

Findings

The research defines maturity characteristics of construction enterprises across five levels namely ad-hoc, driven, transforming, integrated and innovative encompassing seven process categories; data management, people and culture, leadership and strategy, automation, collaboration and communication, change management and innovation. The maturity characteristics are then translated into assessment criteria which can be used to assess how mature a construction enterprise is in navigating Industry 4.0.

Originality/value

The results advance the field of Industry 4.0 strategy research in construction. The findings can be used to access Industry 4.0 maturity of general contractors of varying sizes and scales and generate a set of recommendations to support their macroscopic strategic planning.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 4 of 4