Search results

1 – 4 of 4
Article
Publication date: 27 July 2012

J. Gisbert, M. Bonet, P. Díaz, I. Montava and P. Monllor

Electron beam is a way of radiation that can induce different reactions on polymers. The purpose of this work is to analyze the effect that the electron beam can produce on…

Abstract

Purpose

Electron beam is a way of radiation that can induce different reactions on polymers. The purpose of this work is to analyze the effect that the electron beam can produce on polyester fabrics.

Design/methodology/approach

Poly(ethylene terephthalate) (PET) fibres were treated at 0, 50, 100, 150, and 200 KGy. Later on surface modification was analyzed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Colorimetric and thermal measurements were studied too, as well as traction resistance.

Findings

Traction resistance showed no significant variations. As a result the authors could observe some changes in fabric witnesses and cristallinity increase, but no changes in traction resistance were observed. Moreover, when surface was studied, roughness was increased as oligomers moved towards fibre surface because of radiation dose.

Originality/value

The authors could appreciate roughness increased with radiation dose as well as yellowness and crystallinity.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2016

Salvinija Petrulyte, Deimante Vankeviciute and Donatas Petrulis

The purpose of this paper is to investigate the physical properties of smart aromatherapic ramie/cotton terry fabrics containing microcapsules (MC) with essential Eucalyptus oil…

Abstract

Purpose

The purpose of this paper is to investigate the physical properties of smart aromatherapic ramie/cotton terry fabrics containing microcapsules (MC) with essential Eucalyptus oil.

Design/methodology/approach

Terry fabrics are manufactured by changing the weft density. The air permeability is determined for grey and microencapsulated textile. The factorial designs are made. For informative experiment the linear type of regression is analysed. Development of physical properties of microencapsulated terry fabrics is discussed.

Findings

The air permeability of aromatherapic terry fabrics is determined. All statistical analysis is performed. Appropriate conclusions about the influence of fabric’s structure and microencapsulating process on terry fabric quality are made.

Originality/value

To date there are no investigations concerning terry textiles with fragrance MC. This study developed analysis and empiric mathematical equations suitable for evaluating and designing terry fabrics with the air permeability required. Assessment of the influence of fabric’s weft density and binder concentration for the air permeability of terry textile is proposed.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 September 2016

Somaye Akbari, Mehdi Akbari, Mohammad Haghighat Kish and Firoz Mehr Mazaheri

The production of long-lasting fragrant semi-worsted fabrics using dendritic compounds as one of the nano size materials is concerned. Also quantitative assessments of the odour…

Abstract

Purpose

The production of long-lasting fragrant semi-worsted fabrics using dendritic compounds as one of the nano size materials is concerned. Also quantitative assessments of the odour intensity of the fragrant fabrics using an electronic-nose (E-nose) are made. The paper aims to discuss these issues.

Design/methodology/approach

The semi-worsted fabrics were perfumed using the second generation of polypropylene-imine (PPI) dendrimer as a host molecules. The ginseng and rosewater fragrances as guest molecules were applied into the PPI dendrimer to produce long-lasting fragrant fabrics. The odour intensity as well as long-lasting properties of the fragrant fabrics perfumed recently and the other sample perfumed one year ago were evaluated via E-nose fabricated in our laboratory. Physical properties of the fragrant fabrics were compared to the non-fragrant ones.

Findings

The interaction between ginseng and rosewater fragrances with the second generation of PPI dendrimer into the semi-worsted fabrics made a long-lasting fragrant fabrics without considerable impacts on bending length, air permeability and wrinkle recovery angles based on statistical analysis. However, the effects of making fragrant fabrics on the increasing weight are significant. In addition, the E-nose was successfully used to monitor the release of ginseng and rosewater fragrance from the fabrics by the response patterns of a temperature-modulated chemo-resistive gas sensor. E-nose analysis showed that the aroma intensity released from the old fragrant semi-worsted fabrics has no obvious diversity from that of new fragrant fabrics.

Originality/value

The findings suggest that the semi-worsted fabrics perfumed with dendritic materials revealed excellent sustained release property.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 July 2022

İsmail İvedi, Bahadır Güneşoğlu, Sinem Yaprak Karavana, Gökhan Erkan, Gülşah Ekin Kartal and Ayse Merih Sariisik

The aim was to prepare antibacterial microcapsules and transferred to denim and non-denim (canvas) trousers.

Abstract

Purpose

The aim was to prepare antibacterial microcapsules and transferred to denim and non-denim (canvas) trousers.

Design/methodology/approach

For this purpose, lavender and sweet almond oil as active agents were encapsulated with ethylcellulose shell with a spray dryer method and carried out capsule optimization studies.

Findings

The particle diameter of the capsules ranged between 0.61 and 8.76 µm, SPAN value was 1.608 and the mean particle size was 4 µm. The mass yields of capsules ranged between 35.0 and 75.4 %w/w. Denim fabrics were treated with prepared capsules by exhaustion and spraying methods. It was seen that microcapsules provided a reduction of bacteria by over 97% against both Staphylococcus aureus and Escherichia coli and the fabrics still showed an antibacterial effect after five washing cycles.

Originality/value

When application methods were compared, the spraying method was found to be more sustainable process than exhaustion and could be used as an alternative for reducing energy consumption and capsules could provide antibacterial properties to the fabrics.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 4 of 4