Search results

1 – 3 of 3
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 April 2024

Isiaka Oluwole Oladele, Omoye Oseyomon Odemilin, Samson Oluwagbenga Adelani, Anuoluwapo Samuel Samuel Taiwo and Olajesu Favor Olanrewaju

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid…

Abstract

Purpose

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid biocomposites. This is part of responsible production and sustainability techniques for sustainable development goals. This study aims to broaden animal and plant fiber utilization in the sustainable production of epoxy resins for engineering applications.

Design/methodology/approach

This research used two reinforcing materials [chicken feather fiber (CFF) and bamboo particles (BP)] to reinforce epoxy resin. The BPs were kept constant at 6 Wt.%, while the CFF was varied within 3–15 Wt.% in the composites to make CFF-BP polymer-reinforced composite (CFF-BP PRC). The mechanical experiment showed a 21% reduction in densities, making the CFF-BP PRC an excellent choice for lightweight applications.

Findings

It was discovered that fabricated composites with 10 mm CFF length had improved properties compared with the 15 mm CFF length and pristine samples, which confirmed that short fibers are better at enhancing randomly dispersed fibers in the epoxy matrix. However, the ballistic properties of both samples matched. There is a 40% increase in tensile strength and a 54% increase in flexural strength of the CFF-BP PRC compared to the pristine sample.

Originality/value

According to the literature review, to the best of the authors’ knowledge, this is a novel study of chicken fiber and bamboo particles in reinforcing epoxy composite.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Open Access
Article
Publication date: 10 May 2024

Michelle Grace Tetteh-Caesar, Sumit Gupta, Konstantinos Salonitis and Sandeep Jagtap

The purpose of this systematic review is to critically analyze pharmaceutical industry case studies on the implementation of Lean 4.0 methodologies to synthesize key lessons…

Abstract

Purpose

The purpose of this systematic review is to critically analyze pharmaceutical industry case studies on the implementation of Lean 4.0 methodologies to synthesize key lessons, benefits and best practices. The goal is to inform decisions and guide investments in related technologies for enhancing quality, compliance, efficiency and responsiveness across production and supply chain processes.

Design/methodology/approach

The article utilized a systematic literature review (SLR) methodology following five phases: formulating research questions, locating relevant articles, selecting and evaluating articles, analyzing and synthesizing findings and reporting results. The SLR aimed to critically analyze pharmaceutical industry case studies on Lean 4.0 implementation to synthesize key lessons, benefits and best practices.

Findings

Key findings reveal recurrent efficiency gains, obstacles around legacy system integration and data governance as well as necessary operator training investments alongside technological upgrades. On average, quality assurance reliability improved by over 50%, while inventory waste declined by 57% based on quantified metrics across documented initiatives synthesizing robotics, sensors and analytics.

Research limitations/implications

As a comprehensive literature review, findings depend on available documented implementations within the search period rather than direct case evaluations. Reporting bias may also skew toward more successful accounts.

Practical implications

Synthesized implementation patterns, performance outcomes and concealed pitfalls provide pharmaceutical leaders with an evidence-based reference guide aiding adoption strategy development, resource planning and workforce transitioning crucial for Lean 4.0 assimilation.

Originality/value

This systematic assessment of pharmaceutical Lean 4.0 adoption offers an unprecedented perspective into the real-world issues, dependencies and modifications necessary for successful integration, absent from conceptual projections or isolated case studies alone until now.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Access

Only content I have access to

Year

Last week (3)

Content type

1 – 3 of 3