Search results

1 – 10 of 351
Article
Publication date: 7 November 2023

Christian Nnaemeka Egwim, Hafiz Alaka, Youlu Pan, Habeeb Balogun, Saheed Ajayi, Abdul Hye and Oluwapelumi Oluwaseun Egunjobi

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning…

66

Abstract

Purpose

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning (ML) methods (bagging and boosting ensembles) trained with high-volume data points retrieved from Internet of Things (IoT) emission sensors, time-corresponding meteorology and traffic data.

Design/methodology/approach

For a start, the study experimented big data hypothesis theory by developing sample ensemble predictive models on different data sample sizes and compared their results. Second, it developed a standalone model and several bagging and boosting ensemble models and compared their results. Finally, it used the best performing bagging and boosting predictive models as input estimators to develop a novel multilayer high-effective stacking ensemble predictive model.

Findings

Results proved data size to be one of the main determinants to ensemble ML predictive power. Second, it proved that, as compared to using a single algorithm, the cumulative result from ensemble ML algorithms is usually always better in terms of predicted accuracy. Finally, it proved stacking ensemble to be a better model for predicting PM2.5 concentration level than bagging and boosting ensemble models.

Research limitations/implications

A limitation of this study is the trade-off between performance of this novel model and the computational time required to train it. Whether this gap can be closed remains an open research question. As a result, future research should attempt to close this gap. Also, future studies can integrate this novel model to a personal air quality messaging system to inform public of pollution levels and improve public access to air quality forecast.

Practical implications

The outcome of this study will aid the public to proactively identify highly polluted areas thus potentially reducing pollution-associated/ triggered COVID-19 (and other lung diseases) deaths/ complications/ transmission by encouraging avoidance behavior and support informed decision to lock down by government bodies when integrated into an air pollution monitoring system

Originality/value

This study fills a gap in literature by providing a justification for selecting appropriate ensemble ML algorithms for PM2.5 concentration level predictive modeling. Second, it contributes to the big data hypothesis theory, which suggests that data size is one of the most important factors of ML predictive capability. Third, it supports the premise that when using ensemble ML algorithms, the cumulative output is usually always better in terms of predicted accuracy than using a single algorithm. Finally developing a novel multilayer high-performant hyperparameter optimized ensemble of ensembles predictive model that can accurately predict PM2.5 concentration levels with improved model interpretability and enhanced generalizability, as well as the provision of a novel databank of historic pollution data from IoT emission sensors that can be purchased for research, consultancy and policymaking.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 March 2024

Daryl John Powell, Désirée A. Laubengaier, Guilherme Luz Tortorella, Henrik Saabye, Jiju Antony and Raffaella Cagliano

The purpose of this paper is to examine the digitalization of operational processes and activities in lean manufacturing firms and explore the associated learning implications…

Abstract

Purpose

The purpose of this paper is to examine the digitalization of operational processes and activities in lean manufacturing firms and explore the associated learning implications through the lens of cumulative capability theory.

Design/methodology/approach

Adopting a multiple-case design, we examine four cases of digitalization initiatives within lean manufacturing firms. We collected data through semi-structured interviews and direct observations during site visits.

Findings

The study uncovers the development of learning capabilities as a result of integrating lean and digitalization. We find that digitalization in lean manufacturing firms contributes to the development of both routinized and evolutionary learning capabilities in a cumulative fashion.

Originality/value

The study adds nuance to the limited theoretical understanding of the integration of lean and digitalization by showing how it cumulatively develops the learning capabilities of lean manufacturing firms. As such, the study supports the robustness of cumulative capability theory. We further contribute to research by offering empirical support for the cumulative nature of learning.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 31 March 2023

Duen-Ren Liu, Yang Huang, Jhen-Jie Jhao and Shin-Jye Lee

Online news websites provide huge amounts of timely news, bringing the challenge of recommending personalized news articles. Generative adversarial networks (GAN) based on…

Abstract

Purpose

Online news websites provide huge amounts of timely news, bringing the challenge of recommending personalized news articles. Generative adversarial networks (GAN) based on collaborative filtering (CFGAN) can achieve effective recommendation quality. However, CFGAN ignores item contents, which contain more latent preference features than just user ratings. It is important to consider both ratings and item contents in making preference predictions. This study aims to improve news recommendation by proposing a GAN-based news recommendation model considering both ratings (implicit feedback) and the latent features of news content.

Design/methodology/approach

The collaborative topic modeling (CTM) can improve user preference prediction by combining matrix factorization (MF) with latent topics of item content derived from latent topic modeling. This study proposes a novel hybrid news recommendation model, Hybrid-CFGAN, which modifies the architecture of the CFGAN model with enhanced preference learning from the CTM. The proposed Hybrid-CFGAN model contains parallel neural networks – original rating-based preference learning and CTM-based preference learning, which consider both ratings and news content with user preferences derived from the CTM model. A tunable parameter is used to adjust the weights of the two preference learnings, while concatenating the preference outputs of the two parallel neural networks.

Findings

This study uses the dataset collected from an online news website, NiusNews, to conduct an experimental evaluation. The results show that the proposed Hybrid-CFGAN model can achieve better performance than the state-of-the-art GAN-based recommendation methods. The proposed novel Hybrid-CFGAN model can enhance existing GAN-based recommendation and increase the performance of preference predictions on textual content such as news articles.

Originality/value

As the existing CFGAN model does not consider content information and solely relies on history logs, it may not be effective in recommending news articles. Our proposed Hybrid-CFGAN model modified the architecture of the CFGAN generator by adding a parallel neural network to gain the relevant information from news content and user preferences derived from the CTM model. The novel idea of adjusting the preference learning from two parallel neural networks – original rating-based preference learning and CTM-based preference learning – contributes to improve the recommendation quality of the proposed model by considering both ratings and latent preferences derived from item contents. The proposed novel recommendation model can improve news recommendation, thereby increasing the commercial value of news media platforms.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 16 April 2024

Rahadian Haryo Bayu Sejati, Dermawan Wibisono and Akbar Adhiutama

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor…

Abstract

Purpose

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor productivity without compromising human safety in Indonesian upstream oil field operations that manage ageing and life extension (ALE) facilities.

Design/methodology/approach

The research design applies a pragmatic paradigm by employing action research strategy with qualitative-quantitative methodology involving 385 of 1,533 workers. The KBPMS-L6s conceptual framework is developed and enriched with the Analytical Hierarchy Process (AHP) to prioritize fit-for-purpose Key Performance Indicators. The application of L6s with Human Performance Modes analysis is used to provide a statistical baseline approach for pre-assessment of the contractor’s organizational capabilities. A comprehensive literature review is given for the main pillars of the contextual framework.

Findings

The KBPMS-L6s concept has given an improved hierarchy for strategic and operational levels to achieve a performance benchmark to manage ALE facilities in Indonesian upstream oil field operations. To increase quality management practices in managing ALE facilities, the L6s application requires an assessment of the organizational capability of contractors and an analysis of Human Performance Modes (HPM) to identify levels of construction workers’ productivity based on human competency and safety awareness that have never been done in this field.

Research limitations/implications

The action research will only focus on the contractors’ productivity and safety performances that are managed by infrastructure maintenance programs for managing integrity of ALE facilities in Indonesian upstream of oil field operations. Future research could go toward validating this approach in other sectors.

Practical implications

This paper discusses the implications of developing the hybrid KBPMS- L6s enriched with AHP methodology and the application of HPM analysis to achieve a 14% reduction in inefficient working time, a 28% reduction in supervision costs, a 15% reduction in schedule completion delays, and a 78% reduction in safety incident rates of Total Recordable Incident Rate (TRIR), Days Away Restricted or Job Transfer (DART) and Motor Vehicle Crash (MVC), as evidence of achieving fit-for-purpose KPIs with safer, better, faster, and at lower costs.

Social implications

This paper does not discuss social implications

Originality/value

This paper successfully demonstrates a novel use of Knowledge-Based system with the integration AHP and HPM analysis to develop a hybrid KBPMS-L6s concept that successfully increases contractor productivity without compromising human safety performance while implementing ALE facility infrastructure maintenance program in upstream oil field operations.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 17 March 2023

Qi Sun, Yaya Gao, Qihui Lu and Yingyi Yan

Different external supply scenarios faced by the retailers will affect their choice of strategy when supply is disrupted and becomes far less than demand, urgently. This study…

Abstract

Purpose

Different external supply scenarios faced by the retailers will affect their choice of strategy when supply is disrupted and becomes far less than demand, urgently. This study focuses on analyzing both demand and supply side response strategies to meet customer demand and reduce the impact of the shortage during supply disruptions.

Design/methodology/approach

According to the quantity of products that the external market can provide, the external supply scenarios were divided into sufficient-type external supply and learning-type external supply. A two-echelon perishable goods supply chain was analyzed, and three kinds of contingency strategy models for downstream retailers were investigated. First, in the sufficient external supply scenario, the optimal price and transshipment quantity to maximize retailer's profits is discussed. Second, in the scenario of learning-type external supply, this study analyzes the optimal decision in three mechanisms of the hybrid strategy and their application: price priority mechanism, quantity priority mechanism and price–quantity balance mechanism. Furthermore, the influence of penalty cost and supply on the priority orders of different mechanisms was studied.

Findings

Results show that comparing the two pure strategies (pricing strategy and transshipment strategy)it was noted that the hybrid strategy produces the best results in sufficient-type external supply scenario. In the learning-type external supply scenario, a numerical study has shown the existence of three areas in case of penalty cost and supplier's capacity, and each areas has different priority orders of the three mechanisms. Under the situation of learning external supply, the retailer's optimal strategy is affected by parameters such as penalty cost and supply volume.

Originality/value

The main innovation of the work lies in the following: First; the external supply situation was divided into sufficiency type and learning type, which improves the external situation faced by retailers after the outbreak of emergencies, helps retailers understand the external situation, conforms to the actual situation and has certain practical application value. Second; in the context of learning external supply, there are three coping strategies for retailers, including: Price priority mechanism, Quantity priority mechanism and Pricing and transshipment balance mechanism. This will help retailers make strategic choices, make more scientific management decisions and improve the supply chain emergency management theory. Third; the demand side response was managed through the change of external supply during supply side recovery period and supply disruption. The proposed model enables managing and analyzing supply disruption efficiently and effectively via handling uncertainty by considering all aspects of decision-making process. The proposed model can be applied in various fields such as vegetable and fruit, fresh food, etc.

Details

Kybernetes, vol. 53 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 February 2024

Huiyu Cui, Honggang Guo, Jianzhou Wang and Yong Wang

With the rise in wine consumption, accurate wine price forecasts have significantly impacted restaurant and hotel purchasing decisions and inventory management. This study aims to…

Abstract

Purpose

With the rise in wine consumption, accurate wine price forecasts have significantly impacted restaurant and hotel purchasing decisions and inventory management. This study aims to develop a precise and effective wine price point and interval forecasting model.

Design/methodology/approach

The proposed forecast model uses an improved hybrid kernel extreme learning machine with an attention mechanism and a multi-objective swarm intelligent optimization algorithm to produce more accurate price estimates. To the best of the authors’ knowledge, this is the first attempt at applying artificial intelligence techniques to improve wine price prediction. Additionally, an effective method for predicting price intervals was constructed by leveraging the characteristics of the error distribution. This approach facilitates quantifying the uncertainty of wine price fluctuations, thus rendering decision-making by relevant practitioners more reliable and controllable.

Findings

The empirical findings indicated that the proposed forecast model provides accurate wine price predictions and reliable uncertainty analysis results. Compared with the benchmark models, the proposed model exhibited superiority in both one-step- and multi-step-ahead forecasts. Meanwhile, the model provides new evidence from artificial intelligence to explain wine prices and understand their driving factors.

Originality/value

This study is a pioneering attempt to evaluate the applicability and effectiveness of advanced artificial intelligence techniques in wine price forecasts. The proposed forecast model not only provides useful options for wine price forecasting but also introduces an innovative addition to existing forecasting research methods and literature.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 11 April 2023

M. Muzamil Naqshbandi, Ibrahim Kabir, Nurul Amirah Ishak and Md. Zahidul Islam

Drawing on the job demands-resources (JD-R) model, the authors examine how working in the hybrid workplace model (telework and flexible work) affects job performance via the…

5747

Abstract

Purpose

Drawing on the job demands-resources (JD-R) model, the authors examine how working in the hybrid workplace model (telework and flexible work) affects job performance via the intervening role of work engagement.

Design/methodology/approach

The authors adopted a quantitative approach and collected data from 277 employees working in universities in Nigeria. Partial least square structural equation modelling was used to analyse the data and test the hypotheses.

Findings

The findings reveal that flexible work, not telework, has a significant and positive effect on job performance. It also emerges that flexible work positively affects work engagement, and work engagement significantly mediates the relationship between flexible work and job performance. However, the findings do not support the effect of telework on work engagement and the mediating role of work engagement in the proposed relation between telework and job performance.

Originality/value

The paper provides fresh insights by linking the components of the hybrid workplace model with job performance and employee work engagement and extending the JD-R model to the hybrid workplace setting. The practitioners can benefit from the findings of this study by factoring in the importance of the hybrid workplace model in designing policies and procedures to promote job performance.

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 September 2023

Rafael Henao and William Sarache

Sustainability has become a priority for companies due to pressure from multiple stakeholders. In an overly competitive market, shareholders push for economic results, allowing…

Abstract

Purpose

Sustainability has become a priority for companies due to pressure from multiple stakeholders. In an overly competitive market, shareholders push for economic results, allowing lean manufacturing to establish itself as dominant paradigm in manufacturing. However, concerns grow regarding how lean implementation can allow companies to achieve sustainable development goals, or, if the resources required for a successful lean implementation can result in a detriment of environmental and social performance. This paper intends to help close the knowledge gap regarding the effects of lean manufacturing on sustainable performance from a triple bottom line perspective, and how operational, environmental and social outcomes interact between themselves.

Design/methodology/approach

Two models for the interaction between lean and sustainability were proposed. The first is called the “sand-cone” model, which poses that performance improvements derived from lean are cumulative on each one of the sustainability dimensions. The second is called the “trade-offs” approach. In this case, the resources required to improve one dimension of sustainability clash with those required by the others. Data were gathered from a sample of 133 Colombian metalworking companies and processed using structural equations models.

Findings

The results support the cumulative “sand-cone”, which follows a sequence of operational-environmental-social improvement in the presence of lean. For the “trade-offs” model, partial evidence suggests that they can occur in detriment of social performance.

Originality/value

The “sand-cone” and “trade-offs” are empirically tested for the first time in the context of sustainability, providing further knowledge into its interaction with lean manufacturing. The models’ results contribute to practitioners by providing a tested path for companies to improve their performance in a cumulative sequence that will provide better long-term results.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 8
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 351