Search results

1 – 4 of 4
Article
Publication date: 6 November 2018

Carlos Alejandro Garcia Rosales, Hoejin Kim, Mario F. Garcia Duarte, Luis Chavez, Tzu-Liang Bill Tseng and Yirong Lin

Shape memory polymers (SMPs) are classified as smart materials owing to their inherent stimulus-induced response. SMPs are capable of recovering partially or totally to its…

Abstract

Purpose

Shape memory polymers (SMPs) are classified as smart materials owing to their inherent stimulus-induced response. SMPs are capable of recovering partially or totally to its original shape after a high degree of deformation by external stimulus. The most used stimuli are thermal, light, magnetic field and electricity. This research aims to characterize the toughness property of thermo-responsive SMP specimens fabricated by the material extrusion (ME) process and to investigate the impact of ME parameters on specimen maximum load and load-displacement curves. Moreover, to investigate the recovery efficiency based on the initial and post toughness generated by the compact tension test.

Design/methodology/approach

A design of experiments with three parameters (temperature, velocity and layer height) defined the ME settings to fabricate the specimens. The ME raster orientation factor was also evaluated separately. In addition, one more specimen group assisted by a clamp during the recovery process was compared with a specimen control group. After fabrication, specimens were submitted to a thermo-mechanical cycle that encompasses a compact tension test and a thermo-recovery process. Comparison studies of load-displacement, toughness and recovery efficiency of the specimens were carried out to determine the optimized fabrication parameters.

Findings

It was found that ME parameters and raster orientation impacted the test results. Samples with the clamp support during recovery returned a higher toughness than samples without support. Finally, results showed that the shape memory effect can contribute with up to 43 per cent recovery efficiency in a first recovery and up to 23 per cent in a second recovery of damaged specimens.

Originality/value

This paper is a reference for toughness and recovery properties of SMP parts produced by the ME fabrication process.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 October 2018

Carlos Alejandro Garcia Rosales, Hoejin Kim, Mario F. Garcia Duarte, Luis Chavez, Mariana Castañeda, Tzu-Liang Bill Tseng and Yirong Lin

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This research…

Abstract

Purpose

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This research presents an integration of two commercial SMP materials (DiAPLEX and Tecoflex) and a material extrusion (ME) printer to fabricate SMP parts and specimens. The material properties such as Young’s modulus of the specimens was examined as a process output. Furthermore, stress-strain curve, strain recovery, instant shape-fixity ratio, long-term shape-fixity ratio and recovery ratio of SMP specimens during a thermo-mechanical cycle were investigated.

Design/methodology/approach

The ME fabrication settings for the SMP specimens were defined by implementing a design of experiments with temperature, velocity and layer height as process variables.

Findings

It was found, according to main effect and iteration plots, that fabrication parameters have an impact on Young’s modulus and exist minimum iteration among variables. In addition, Young’s modulus variation of DiAPLEX and Tecoflex specimens was mostly caused by velocity and layer height parameters, respectively. Moreover, results showed that SMP specimens were able to recover high levels of deformation.

Originality/value

This paper is a reference for process control and for rheological properties of SMP parts produced by ME fabrication process.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2018

Hoejin Kim, Yirong Lin and Tzu-Liang Bill Tseng

The usage of additive manufacturing (AM) technology in industries has reached up to 50 per cent as prototype or end-product. However, for AM products to be directly used as final…

4967

Abstract

Purpose

The usage of additive manufacturing (AM) technology in industries has reached up to 50 per cent as prototype or end-product. However, for AM products to be directly used as final products, AM product should be produced through advanced quality control process, which has a capability to be able to prove and reach their desire repeatability, reproducibility, reliability and preciseness. Therefore, there is a need to review quality-related research in terms of AM technology and guide AM industry in the future direction of AM development.

Design/methodology/approach

This paper overviews research progress regarding the QC in AM technology. The focus of the study is on manufacturing quality issues and needs that are to be developed and optimized, and further suggests ideas and directions toward the quality improvement for future AM technology. This paper is organized as follows. Section 2 starts by conducting a comprehensive review of the literature studies on progress of quality control, issues and challenges regarding quality improvement in seven different AM techniques. Next, Section 3 provides classification of the research findings, and lastly, Section 4 discusses the challenges and future trends.

Findings

This paper presents a review on quality control in seven different techniques in AM technology and provides detailed discussions in each quality process stage. Most of the AM techniques have a trend using in-situ sensors and cameras to acquire process data for real-time monitoring and quality analysis. Procedures such as extrusion-based processes (EBP) have further advanced in data analytics and predictive algorithms-based research regarding mechanical properties and optimal printing parameters. Moreover, compared to others, the material jetting progresses technique has advanced in a system integrated with closed-feedback loop, machine vision and image processing to minimize quality issues during printing process.

Research limitations/implications

This paper is limited to reviewing of only seven techniques of AM technology, which includes photopolymer vat processes, material jetting processes, binder jetting processes, extrusion-based processes, powder bed fusion processes, directed energy deposition processes and sheet lamination processes. This paper would impact on the improvement of quality control in AM industries such as industrial, automotive, medical, aerospace and military production.

Originality/value

Additive manufacturing technology, in terms of quality control has yet to be reviewed.

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 4 of 4