Search results

1 – 10 of 29
Article
Publication date: 20 June 2022

Quanli Deng, Chunhua Wang, Yazheng Wu and Hairong Lin

The purpose of this paper is to construct a multiwing chaotic system that has hidden attractors with multiple stable equilibrium points. Because the multiwing hidden attractors…

Abstract

Purpose

The purpose of this paper is to construct a multiwing chaotic system that has hidden attractors with multiple stable equilibrium points. Because the multiwing hidden attractors chaotic systems are safer and have more dynamic behaviors, it is necessary to construct such a system to meet the needs of developing engineering.

Design/methodology/approach

By introducing a multilevel pulse function into a three-dimensional chaotic system with two stable node–foci equilibrium points, a hidden multiwing attractor with multiple stable equilibrium points can be generated. The switching behavior of a hidden four-wing attractor is studied by phase portraits and time series. The dynamical properties of the multiwing attractor are analyzed via the Poincaré map, Lyapunov exponent spectrum and bifurcation diagram. Furthermore, the hardware experiment of the proposed four-wing hidden attractors was carried out.

Findings

Not only unstable equilibrium points can produce multiwing attractors but stable node–foci equilibrium points can also produce multiwing attractors. And this system can obtain 2N + 2-wing attractors as the stage pulse of the multilevel pulse function is N. Moreover, the hardware experiment matches the simulation results well.

Originality/value

This paper constructs a new multiwing chaotic system by enlarging the number of stable node–foci equilibrium points. In addition, it is a nonautonomous system that is more suitable for practical projects. And the hardware experiment is also given in this article which has not been seen before. So, this paper promotes the development of hidden multiwing chaotic attractors in nonautonomous systems and makes sense for applications.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 April 2022

Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…

Abstract

Purpose

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).

Design/methodology/approach

First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.

Findings

The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.

Originality/value

It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 19 October 2023

Niv Yonat, Shabtai Isaac and Igal M. Shohet

The purpose of this research is to provide a theoretical and practical theory and application that provides understanding and means to manage complex infrastructures.

Abstract

Purpose

The purpose of this research is to provide a theoretical and practical theory and application that provides understanding and means to manage complex infrastructures.

Design/methodology/approach

In this research, complexity, nonlinear, noncontinuous effects and aleatoric and data unknowns are bypassed by directly addressing systems' responses. Graph theory, statistics and digital signal processing (DSP) tools are applied within a theoretical framework of the theory of faults (ToF). Motivational complex infrastructure systems (CISs) are difficult to model. Data are often missing or erroneous, changes are not well documented and processes are not well understood. On top of it, under complexity, stalwart analytical tools have limited predictive power. The aleatoric risk, such as rain and risk cascading from interconnected infrastructures, is unpredictable. Mitigation, response and recovery efforts are adversely affected.

Findings

The theory and application are presented and demonstrated by a step-by-step development of an application to a municipal drainage system. A database of faults is analyzed to produce system statistics, spatio-temporal morphology, behavior and traits. The gained understanding is compared to the physical system's design and to its modus operandi. Implications for design and maintenance are inferred; DSP tools to manage the system in real time are developed.

Research limitations/implications

Sociological systems are interest driven. Some events are intentionally created and directed to the benefit and detriment of the opposing parties in a project. Those events may be explained and possibly predicted by understanding power plays, not power functions. For those events, sociological game theories provide better explanatory value than mathematical gain theories.

Practical implications

The theory provides a thematic network for modeling and resolving aleatoric uncertainty in engineering and sociological systems. The framework may be elaborated to fields such as energy, healthcare and critical infrastructure.

Social implications

ToF provides a framework for the modeling and prediction of faults generated by inherent aleatoric uncertainties in social and technological systems. Therefore, the framework and theory lay the basis for automated monitoring and control of aleatoric uncertainties such as mechanical failures and human errors and the development of mitigation systems.

Originality/value

The contribution of this research is in the provision of an explicatory theory and a management paradigm for complex systems. This theory is applicable to a wide variety of fields from facilities and construction project management to maintenance and from academic studies to commercial use.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 January 2023

Yanqing Shi, Hongye Cao and Si Chen

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of…

Abstract

Purpose

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.

Design/methodology/approach

The authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.

Findings

There are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.

Originality/value

This study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.

Details

Aslib Journal of Information Management, vol. 76 no. 1
Type: Research Article
ISSN: 2050-3806

Keywords

Book part
Publication date: 27 July 2023

Oswald A. J. Mascarenhas, Munish Thakur and Payal Kumar

“The unexamined life is not worth living,” said Socrates. That is, without critically inquiring into the knowledge of life, which is well-being and valuable, life is not worth…

Abstract

Executive Summary

“The unexamined life is not worth living,” said Socrates. That is, without critically inquiring into the knowledge of life, which is well-being and valuable, life is not worth living. Critical thinking questions existing theories and their unexamined and obsessive assumptions and generalizations, constraints, and the so-called “best” practices of the prevailing system of management and tries to replace them with more valid assumptions and generalizations that uphold the dignity, uniqueness, and inalienable rights of every individual and the community. In our diverse and pluralistic cultural environment, the promise of a truly generative dialogue among occidental (western) and oriental (eastern) cultures and civilizations holds great hope for the future. Critical thinking can facilitate this dialogue such that all of us have a meaningful place in this universe. In this chapter, we explore introductory working definitions of critical thinking so that we can early enough understand its demanding domains, moral calls, and ramifications in its current critical applications. Specifically, in Part I, we examine the structured layers of our thinking and reasoning to dismantle them progressively, and in Part II, in support of our claims, we explore complexity and chaos theories as a new resource for critical thinking.

Details

A Primer on Critical Thinking and Business Ethics
Type: Book
ISBN: 978-1-83753-308-4

Abstract

Purpose

This conceptual, multi-voiced paper aims to collectively explore and theorize family entrepreneuring, which is a research stream dedicated to investigating the emergence and becoming of entrepreneurial phenomena in business families and family firms.

Design/methodology/approach

Because of the novelty of this research stream, the authors asked 20 scholars in entrepreneurship and family business to reflect on topics, methods and issues that should be addressed to move this field forward.

Findings

Authors highlight key challenges and point to new research directions for understanding family entrepreneuring in relation to issues such as agency, processualism and context.

Originality/value

This study offers a compilation of multiple perspectives and leverage recent developments in the fields of entrepreneurship and family business to advance research on family entrepreneuring.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

Article
Publication date: 31 October 2023

Wenchao Zhang, Peixin Shi, Zhansheng Wang, Huajing Zhao, Xiaoqi Zhou and Pengjiao Jia

An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and…

Abstract

Purpose

An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and complex nature of the deformation makes the prediction challenging. This paper proposes an explainable boosted combining global and local feature multivariate regression (EB-GLFMR) model with high accuracy, robustness and interpretability to predict the deformation of retaining structures during braced deep excavations.

Design/methodology/approach

During the model development, the time series of deformation data is decomposed using a locally weighted scatterplot smoothing technique into trend and residual terms. The trend terms are analyzed through multiple adaptive spline regressions. The residual terms are reconstructed in phase space to extract both global and local features, which are then fed into a gradient-boosting model for prediction.

Findings

The proposed model outperforms other established approaches in terms of accuracy and robustness, as demonstrated through analyzing two cases of braced deep excavations.

Research limitations/implications

The model is designed for the prediction of the deformation of deep excavations with stepped, chaotic and fluctuating features. Further research needs to be conducted to expand the model applicability to other time series deformation data.

Practical implications

The model provides an efficient, robust and transparent approach to predict deformation during braced deep excavations. It serves as an effective decision support tool for engineers to ensure the stability and safety of deep excavations.

Originality/value

The model captures the global and local features of time series deformation of retaining structures and provides explicit expressions and feature importance for deformation trends and residuals, making it an efficient and transparent approach for deformation prediction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2024

Indranil Ghosh, Rabin K. Jana and Dinesh K. Sharma

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive…

Abstract

Purpose

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive modeling framework for predicting the future figures of Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Stellar (XLM) and Tether (USDT) during normal and pandemic regimes.

Design/methodology/approach

Initially, the major temporal characteristics of the price series are examined. In the second stage, ensemble empirical mode decomposition (EEMD) and maximal overlap discrete wavelet transformation (MODWT) are used to decompose the original time series into two distinct sets of granular subseries. In the third stage, long- and short-term memory network (LSTM) and extreme gradient boosting (XGB) are applied to the decomposed subseries to estimate the initial forecasts. Lastly, sequential quadratic programming (SQP) is used to fetch the forecast by combining the initial forecasts.

Findings

Rigorous performance assessment and the outcome of the Diebold-Mariano’s pairwise statistical test demonstrate the efficacy of the suggested predictive framework. The framework yields commendable predictive performance during the COVID-19 pandemic timeline explicitly as well. Future trends of BTC and ETH are found to be relatively easier to predict, while USDT is relatively difficult to predict.

Originality/value

The robustness of the proposed framework can be leveraged for practical trading and managing investment in crypto market. Empirical properties of the temporal dynamics of chosen cryptocurrencies provide deeper insights.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 25 July 2023

James M. Vardaman, William E. Tabor, Darel C. Hargrove and Feigu Zhou

The role of family business staffing practices in their ultimate success remains largely unknown. The purpose of this paper is to test the notion that firms with greater family…

Abstract

Purpose

The role of family business staffing practices in their ultimate success remains largely unknown. The purpose of this paper is to test the notion that firms with greater family essence manifest their commitment by leveraging referrals as a recruitment source, which in turn is associated with higher performance. The hypothesized model posits that reduced agency costs from hiring through owner referral utilization (ORU) provide high-family essence firms with stronger performance.

Design/methodology/approach

The study draws upon a sample of 194 small and medium-sized family business owners.

Findings

Findings from OLS regression and the PROCESS model in SPSS support the hypothesis that recruiting nonfamily employees from referrals helps lessen agency conflicts and serves as an intervening mechanism in the relationship between family firm essence and firm performance.

Originality/value

This study draws on agency theory to shed light on how family firms successfully bring nonfamily employees into the fold despite their human resource limitations. The results extend theory on family businesses by demonstrating that those with higher degrees of family essence are more likely to attract applicants via ORU. Leveraging this recruiting practice allows family businesses to hire nonfamily employees who share the values and goals of the family firm, thus lowering agency costs and fostering higher performance. More broadly, the findings offer insight into the role of staffing practices in family firm success.

Details

Journal of Family Business Management, vol. 14 no. 1
Type: Research Article
ISSN: 2043-6238

Keywords

1 – 10 of 29