Search results

1 – 2 of 2
Article
Publication date: 20 June 2017

Changjun Chen, Yang Li, Min Zhang, Xiaonan Wang, Chao Zhang and Hemin Jing

Additive manufacturing (AM), a method used in the nuclear, space and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external…

338

Abstract

Purpose

Additive manufacturing (AM), a method used in the nuclear, space and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. AM allows porous tantalum parts with mechanical properties close to that of bone tissue to be obtained.

Design/methodology/approach

In this paper, porous tantalum structures with different scan distance were fabricated by AM using laser multi-layer micro-cladding.

Findings

Porous tantalum samples were tested for resistance to compressive force and used scanning electron microscope to reveal the morphology of before and after compressive tests. Their structure and mechanical properties of these porous Ta structures with porosity in the range of 35.48 to 50 per cent were investigated. The porous tantalum structures have comparable compressive strength 56 ∼ 480 MPa, and elastic modulus 2.8 ∼ 9.0GPa, which is very close to those of human spongy bone and compact bone.

Research limitations/implications

This paper does not demonstrate the implant results.

Practical implications

It can be used as implant material for the repair bone.

Social implications

It can be used for fabrication of other porous materials.

Originality/value

This paper system researched the scan distance on how to influence the mechanical properties of fabricated porous tantalum structures.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Lanlan Qin, Changjun Chen, Min Zhang, Kai Yan, Guangping Cheng, Hemin Jing and Xiaonan Wang

Laser additive manufacturing (LAM) technology based on powder bed has been used to manufacture complex geometrical components. In this study, IN625 superalloys were fabricated by…

760

Abstract

Purpose

Laser additive manufacturing (LAM) technology based on powder bed has been used to manufacture complex geometrical components. In this study, IN625 superalloys were fabricated by high-power fiber laser without cracks, bounding errors or porosity. Meanwhile, the objectives of this paper are to systemically investigate the microstructures, micro-hardness and the precipitated Laves phase of deposited-IN625 under different annealing temperatures.

Design/methodology/approach

The effects of annealing temperatures on the microstructure, micro-hardness and the precipitated Laves phase were studied by optical microscope (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), selected area electron diffraction (SAED), backscattered electron (BSE) imaging in the SEM and transmission electron microscopy (TEM), respectively. The thermal stability of the dendritic morphology about IN625 superalloys was investigated through annealing at temperatures range from 1,000°C to 1,200°C.

Findings

It is found that the microstructure of deposited-IN625 was typical dendrite structure. Besides, some Laves phase precipitated in the interdendritic region results in the segregation of niobium and molybdenum. The thermal stability indicate that the morphology of dendrite can be stable up to 1,000°C. With the annealing temperatures increasing from 1,000 to 1,200°C, the Laves phase partially dissolves into the γ-Ni matrix, and the morphology of the remaining Laves phase is changing from irregular shape to rod-like or block-like shape.

Research limitations/implications

The heat treatment used on the IN625 superalloys is helpful for knowing the evolution of microstructures and precipitated phases thermal stability and mechanical properties.

Practical implications

Due to the different kinds of application conditions, the original microstructure of the IN625 superalloys fabricated by LAM may not be ideal. So exploring the influence of annealing treatment on IN625 superalloys can bring theory basis and guidance for actual production.

Originality/value

This study continues valuing the fabrication of IN625 by LAM. It shows the effect of annealing temperatures on the shape, size and distribution of Laves phase and the microstructures of deposited-IN625 superalloys.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2