Search results

1 – 10 of 718
Open Access
Article
Publication date: 14 March 2022

Luke McCully, Hung Cao, Monica Wachowicz, Stephanie Champion and Patricia A.H. Williams

A new research domain known as the Quantified Self has recently emerged and is described as gaining self-knowledge through using wearable technology to acquire information on self…

Abstract

Purpose

A new research domain known as the Quantified Self has recently emerged and is described as gaining self-knowledge through using wearable technology to acquire information on self-monitoring activities and physical health related problems. However, very little is known about the impact of time window models on discovering self-quantified patterns that can yield new self-knowledge insights. This paper aims to discover the self-quantified patterns using multi-time window models.

Design/methodology/approach

This paper proposes a multi-time window analytical workflow developed to support the streaming k-means clustering algorithm, based on an online/offline approach that combines both sliding and damped time window models. An intervention experiment with 15 participants is used to gather Fitbit data logs and implement the proposed analytical workflow.

Findings

The clustering results reveal the impact of a time window model has on exploring the evolution of micro-clusters and the labelling of macro-clusters to accurately explain regular and irregular individual physical behaviour.

Originality/value

The preliminary results demonstrate the impact they have on finding meaningful patterns.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 14 May 2018

Jayden Khakurel, Helinä Melkas and Jari Porras

The purpose of this paper is to expand current knowledge about the recent trend of wearable technology to assess both its potential in the work environment and the challenges…

13733

Abstract

Purpose

The purpose of this paper is to expand current knowledge about the recent trend of wearable technology to assess both its potential in the work environment and the challenges concerning the utilisation of wearables in the workplace.

Design/methodology/approach

After establishing exclusion and inclusion criteria, an independent systematic search of the ACM Digital Library, IEEE Xplore, ScienceDirect and Web of Science databases for relevant studies was performed. Out of a total of 359 articles, 34 met the selection criteria.

Findings

This review identifies 23 categories of wearable devices. Further categorisation of the devices based on their utilisation shows they can be used in the work environment for activities including monitoring, augmenting, assisting, delivering and tracking. The review reveals that wearable technology has the potential to increase work efficiency among employees, improve workers’ physical well-being and reduce work-related injuries. However, the review also reveals that technological, social, policy and economic challenges related to the use of wearable devices remain.

Research limitations/implications

Many studies have investigated the benefits of wearable devices for personal use, but information about the use of wearables in the work environment is limited. Further research is required in the fields of technology, social challenges, organisation strategies, policies and economics to enhance the adoption rate of wearable devices in work environments.

Originality/value

Previous studies indicate that occupational stress and injuries are detrimental to employees’ health; this paper analyses the use of wearable devices as an intervention method to monitor or prevent these problems. Introducing a categorisation framework during implementation may help identify which types of device categories are suitable and could be beneficial for specific utilisation purposes, facilitating the adoption of wearable devices in the workplace.

Open Access
Article
Publication date: 22 August 2022

Euodia Vermeulen and Sara Grobbelaar

In this article we aim to understand how the network formed by fitness tracking devices and associated apps as a subset of the broader health-related Internet of things is capable…

Abstract

Purpose

In this article we aim to understand how the network formed by fitness tracking devices and associated apps as a subset of the broader health-related Internet of things is capable of spreading information.

Design/methodology/approach

The authors used a combination of a content analysis, network analysis, community detection and simulation. A sample of 922 health-related apps (including manufacturers' apps and developers) were collected through snowball sampling after an initial content analysis from a Google search for fitness tracking devices.

Findings

The network of fitness apps is disassortative with high-degree nodes connecting to low-degree nodes, follow a power-law degree distribution and present with low community structure. Information spreads faster through the network than an artificial small-world network and fastest when nodes with high degree centrality are the seeds.

Practical implications

This capability to spread information holds implications for both intended and unintended data sharing.

Originality/value

The analysis confirms and supports evidence of widespread mobility of data between fitness and health apps that were initially reported in earlier work and in addition provides evidence for the dynamic diffusion capability of the network based on its structure. The structure of the network enables the duality of the purpose of data sharing.

Details

Information Technology & People, vol. 35 no. 8
Type: Research Article
ISSN: 0959-3845

Keywords

Open Access
Article
Publication date: 22 March 2023

Kabir Ibrahim, Fredrick Simpeh and Oluseyi Julius Adebowale

Construction organizations must maintain a productive workforce without sacrificing their health and safety. The global construction sector loses billions of dollars yearly to…

3229

Abstract

Purpose

Construction organizations must maintain a productive workforce without sacrificing their health and safety. The global construction sector loses billions of dollars yearly to poor health and safety practices. This study aims to investigate benefits derivable from using wearable technologies to improve construction health and safety. The study also reports the challenges associated with adopting wearable technologies.

Design/methodology/approach

The study adopted a quantitative design, administering close-ended questions to professionals in the Nigerian construction industry. The research data were analysed using descriptive and inferential statistics.

Findings

The study found that the critical areas construction organizations can benefit from using WSDs include slips and trips, sensing environmental concerns, collision avoidance, falling from a high level and electrocution. However, key barriers preventing the organizations from adopting wearable technologies are related to cost, technology and human factors.

Practical implications

The time and cost lost to H&S incidents in the Nigerian construction sector can be reduced by implementing the report of this study.

Originality/value

Studies on WSDs have continued to increase in developed countries, but Nigeria is yet to experience a leap in the research area. This study provides insights into the Nigerian reality to provide directions for practice and theory.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of…

23297

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access

Abstract

Purpose

To compare the electromyography (EMG) features during physical and imagined standing up in healthy young adults.

Design/methodology/approach

Twenty-two participants (ages ranged from 20–29 years old) were recruited to participate in this study. Electrodes were attached to the rectus femoris, biceps femoris, tibialis anterior and the medial gastrocnemius muscles of both sides to monitor the EMG features during physical and imagined standing up. The %maximal voluntary contraction (%MVC), onset and duration were calculated.

Findings

The onset and duration of each muscle of both sides had no statistically significant differences between physical and imagined standing up (p > 0.05). The %MVC of all four muscles during physical standing up was statistically significantly higher than during imagined standing up (p < 0.05) on both sides. Moreover, the tibialis anterior muscle of both sides showed a statistically significant contraction before the other muscles (p < 0.05) during physical and imagined standing up.

Originality/value

Muscles can be activated during imagined movement, and the patterns of muscle activity during physical and imagined standing up were similar. Imagined movement may be used in rehabilitation as an alternative or additional technique combined with other techniques to enhance the STS skill.

Details

Journal of Health Research, vol. 35 no. 1
Type: Research Article
ISSN: 0857-4421

Keywords

Content available
Article
Publication date: 1 March 2003

92

Abstract

Details

Sensor Review, vol. 23 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 21 August 2009

115

Abstract

Details

Circuit World, vol. 35 no. 3
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 18 September 2009

John Ling

115

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 31 July 2009

290

Abstract

Details

Microelectronics International, vol. 26 no. 3
Type: Research Article
ISSN: 1356-5362

1 – 10 of 718