Search results

1 – 10 of 73
Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 March 2022

Philip Hong Wei Jiang and William Yu Chung Wang

The purpose of this paper is to explain how enterprise resource planning (ERP) implementation evolves by cloud computing in different industries with different delivery models of…

Abstract

Purpose

The purpose of this paper is to explain how enterprise resource planning (ERP) implementation evolves by cloud computing in different industries with different delivery models of cloud ERP. This paper also investigates infrastructure as a service (IaaS) as a delivery approach for cloud ERP. Case research on IaaS is rarely found in the literature. In addition, this paper intends to reveal how this transformation from on-premises to the cloud would influence the ERP implementation process.

Design/methodology/approach

A multiple-case study is conducted to identify the different deployed models of cloud ERP systems in the implementation projects. The influences of emerging cloud computing technology on ERP implementation are investigated by interviewing consultants related to the projects.

Findings

The findings illustrate that not only software as a service (SaaS) but also IaaS and platform as a service cloud computing services are widely applied in cloud ERP implementation. This study also indicates that certain technical limitations of cloud ERP might have a positive effect on the outcome of ERP implementation.

Originality/value

This study investigates how cloud computing influences ERP implementation from different aspects. The result identifies both SaaS and IaaS as two different approaches widely adopted in cloud ERP implementation. Besides, this study has discussed in-depth and analyzed these two cloud ERP paradigms in five factors, including functionality, performance, portability, security, cost and customization. The classification and suggestions are original to the literature.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 54 no. 3
Type: Research Article
ISSN: 2059-5891

Keywords

Article
Publication date: 30 April 2024

Omar Malla and Madhavan Shanmugavel

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when…

Abstract

Purpose

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when the manipulator changes its position. They are implemented in many palletizing robots connected with binary, ternary and quaternary links through both active and passive joints. This limits the motion of some joints and hence results in relative and negative joint angles when assigning coordinate axes. This study aims to provide a simplified accurate model for manipulators built with parllelogram linkages to ease the kinematics calculations.

Design/methodology/approach

This study introduces a simplified model, replacing each parallelogram linkage with a single (binary) link with an active and a passive joint at the ends. This replacement facilitates countering motion while preserving subsequent link orientations. Validation of kinematics is performed on palletizing manipulators from five different OEMs. The validation of Dobot Magician and ABB IRB1410 was carried out in real time and in their control software. Other robots from ABB, Yaskawa, Kuka and Fanuc were validated using control environments and simulators.

Findings

The proposed model enables the straightforward derivation of forward kinematics and transforms hybrid robots into equivalent serial-link robots. The model demonstrates high accuracy streamlining the derivation of kinematics.

Originality/value

The proposed model facilitates the use of classical methods like the Denavit–Hartenberg procedure with ease. It not only simplifies kinematics derivation but it also helps in robot control and motion planning within the workspace. The approach can also be implemented to simplify the parallelogram linkages of robots with higher degrees of freedom such as the IRB1410.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

Economic costs and benefits are at the core while taking decision to adopt digitalization in the supply chain. The present chapter provides an in-depth exploration of the economic…

Abstract

Economic costs and benefits are at the core while taking decision to adopt digitalization in the supply chain. The present chapter provides an in-depth exploration of the economic dimensions of digital supply chain management (DSCM) adoption in a firm. Drawing from a diverse source of literature, this chapter discusses the effect of economic outlook on DSCM adoption, the economic benefits of DSCM adoption and costs associated with it, and economic analysis and evaluation methodologies. The chapter also shares the case studies illustrating the real-world implications of economic considerations within DSCM initiatives. The chapter highlights how changing international socioeconomic and political dynamics can influence businesses across the globe. By analyzing the impacts of evolving market trends, changing consumer preferences, and geopolitical tensions, organizations can considerably forecast the possible impacts of these macroeconomic forces adeptly. The chapter also undertakes discussion on the economic cost and benefits associated with DSCM adoption. The economic analysis helps understand that the expected benefits outweigh economic costs, substantiating the economic viability of DSCM projects. The chapter concludes by discussing the examples of some real-world companies, highlighting how organizations have successfully applied economic analyses to their DSCM initiatives. This also highlights as to how showcasing how detailed economic assessments can justify substantial investments, deliver operational efficiencies, and reshape industries.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

The advent of the digital technologies (DTs), coincided with the pandemic and global conflicts, has proven to be an unprecedented and transformative era for supply chain…

Abstract

The advent of the digital technologies (DTs), coincided with the pandemic and global conflicts, has proven to be an unprecedented and transformative era for supply chain management (SCM). DTs are reshaping the way organizations plan, execute, and optimize their SC operations. Throughout this book, we posit that the adoption of digital supply chain management (DSCM) has become essential for staying competitive and responsive in a rapidly evolving business environment. However, amid technological advancements and digital solutions, there exists a critical factor that often goes overlooked – the significance of intangible assets, specifically intellectual capital (IC). This chapter comprehensively explores the role of an organization's IC in the adoption and performance of DSCM. We employ a comprehensive analytical approach, drawing upon existing literature from various sources to elucidate the relationship between IC and DSCM. Synthesizing insights from the literature, the chapter shows how each constituent of IC contributes to the adoption, operation, and performance improvement of DSCM. The discussion in the chapter shows that human capital (HC) forms foundations, as the knowledge, skills, and abilities (KSAs) of the employees are prerequisites essential for understanding, adopting, and capitalizing on DTs in SCM. The analysis also reveals that SC, which represents organizational processes, digital tools, and knowledge repositories, supports the seamless integration of DTs within SCs. Similarly, RC, by nurturing trust, open communication, and collaborative networks, plays an instrumental role in establishing ecosystems that help the adoption and effective functioning of DSCM. This chapter makes a convincing case to consider IC as the strategic component while DSCM adoption and performance.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM)…

Abstract

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM), Digital Supply Chain Management (DSCM), has fundamentally reshaped the SCM landscape, offering new opportunities and challenges for organizations. This chapter provides a comprehensive overview of modern DTs and the way they impact modern SCM. This chapter has twofold objectives. First, it illustrates the major changes that DTs have brought to the supply chain landscape, unraveling their multifaceted implications. Second, it offers readers a deeper and comprehensive understanding of the challenges and opportunities arising from the incorporation of DTs into supply chains. By going through the chapter, readers will be able to have a comprehensive grasp of how DTs are reshaping SCM and how organizations can survive and thrive in the digital age. This chapter commences by shedding light on how DTs have and continue to redefine SCM, improving supply chain resilience, visibility, and sustainability in an increasingly complex and interconnected world. It also highlights the role of DTs in enhancing SC visibility, agility, and customer-centricity. Furthermore, this chapter briefly highlights the challenges related to the adoption (pre and post) of DTs in SCM, elucidating on issues related to talent acquisition, data security, and regulatory compliance. It also highlights the ethical and societal implications of this digital transformation, emphasizing the significance of responsible and sustainable practices. This chapter, with the help of three cases, illustrates how the adoption of DTs in SC can impact the various SC performance indicators.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 12 April 2024

Ahmad Honarjoo and Ehsan Darvishan

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of…

Abstract

Purpose

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of repairing and rehabilitating massive bridges and buildings is very high, highlighting the need to monitor the structures continuously. One way to track the structure's health is to check the cracks in the concrete. Meanwhile, the current methods of concrete crack detection have complex and heavy calculations.

Design/methodology/approach

This paper presents a new lightweight architecture based on deep learning for crack classification in concrete structures. The proposed architecture was identified and classified in less time and with higher accuracy than other traditional and valid architectures in crack detection. This paper used a standard dataset to detect two-class and multi-class cracks.

Findings

Results show that two images were recognized with 99.53% accuracy based on the proposed method, and multi-class images were classified with 91% accuracy. The low execution time of the proposed architecture compared to other valid architectures in deep learning on the same hardware platform. The use of Adam's optimizer in this research had better performance than other optimizers.

Originality/value

This paper presents a framework based on a lightweight convolutional neural network for nondestructive monitoring of structural health to optimize the calculation costs and reduce execution time in processing.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 April 2024

Giovanna Culot, Guido Orzes, Marco Sartor and Guido Nassimbeni

This study aims to analyze the factors that drive or prevent interorganizational data sharing in the context of digital transformation (DT). Data sharing appears as a precondition…

Abstract

Purpose

This study aims to analyze the factors that drive or prevent interorganizational data sharing in the context of digital transformation (DT). Data sharing appears as a precondition for companies to capture emerging opportunities in supply chain management and for product-related servitization; however, there are ongoing concerns, and data are often perceived as the “new oil.” It is thus important to gain a better understanding of the determinants of firms’ decisions.

Design/methodology/approach

The authors develop an embedded case study analysis involving 16 firms within an extended supply network in the automotive industry. The authors focus on the peculiarities of the new context, as opposed to elements highlighted by research prior to the advent of the latest technologies. Abductive reasoning is applied to the theoretical foundations of the resource-based view, resource dependence theory and the complex adaptive systems perspective.

Findings

Data sharing is largely underpinned by factors identified prior to DT, such as data specificity, dependence dynamics and protection mechanisms and the dynamism of the business context. DT, however, can influence the extent of data sharing. New factors concern complementarities whenever data are pooled from different sources and digital platforms, as well as different forms of data ownership protection.

Originality/value

This study stresses that data sharing in the context of DT can be explained through established theoretical lenses, providing the integration of elements accounting for new technological opportunities.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

1 – 10 of 73