Search results

1 – 5 of 5
Article
Publication date: 1 April 1995

Funda Sahin, H. Bulent Ertan and Kemal Leblebicioglu

This paper briefly describes an approach to determine the optimum magnetic circuit parameters to minimize low speed torque ripple for switched reluctance (SR) motors. For…

Abstract

This paper briefly describes an approach to determine the optimum magnetic circuit parameters to minimize low speed torque ripple for switched reluctance (SR) motors. For prediction of the torque ripple, normalized data obtained from field solution and a neural network approach is used. Comparison of experimental results with computations illustrates the accuracy of the method. The optimization method is briefly described and some results are presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 2002

Hayrettin Can, Erhan Akin and H. Bulent Ertan

Vector control has very good transient and steady‐state performance in induction motors. Furthermore, most direct stator flux orientation methods do not need speed information and…

Abstract

Vector control has very good transient and steady‐state performance in induction motors. Furthermore, most direct stator flux orientation methods do not need speed information and these methods are not sensitive to parameters other than stator resistance. However, the performance of these control strategies depends on accurate estimation of the stator flux. The voltage model is one of the methods used for estimating the stator flux. In this paper, we discuss the integration methods for the voltage model which have an open integration problem, and those which have magnitude and angle errors in the stator flux. We then describe a new compensator to solve the problems associated with the integrator. The limiting level in the feedback loop of this compensator is estimated by using the intersection points of the two phases of the stator flux. The proposed new compensation method, which is computationally fast, has been both simulated and implemented on an experimental system. Experimental results show excellent performance, especially near zero speed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

İres İskender, Yıldürüm Üçtug˘ and H. Bülent Ertan

To derive an analytical model for a dc‐ac‐dc parallel resonant converter operating in lagging power factor mode based on the steady‐state operation conditions and considering the…

Abstract

Purpose

To derive an analytical model for a dc‐ac‐dc parallel resonant converter operating in lagging power factor mode based on the steady‐state operation conditions and considering the effects of a high‐frequency transformer.

Design/methodology/approach

A range of published works relevant to dc‐ac‐dc converters and their control methods based on pulse‐width‐modulation technique are evaluated and their limitations in output measurement of higher output voltage converters are indicated. The circuit diagram of the converter is described and the general mathematical model of the system is obtained by deriving and combining the mathematical models of the different converter blocks existing in the system. The derived mathematical model is used to study the steady‐state and transient performance of the converter. The deriving procedure of the analytical model for a parallel resonant converter is extensively given and the analytical model obtained is verified by simulation results achieved using MATLAB/SIMULINK and the program written by the authors.

Findings

The paper suggests an analytical model for dc‐ac‐dc parallel resonant converters. The model can be used in the output voltage estimation of a converter in terms of its phase‐shift angle and the dc‐link voltage.

Research limitations/implications

The resources in the library of the authors' university and also the English resources relative to dc‐ac‐dc converters reachable through the internet were researched.

Practical implications

The analytical model suggested can be used in estimating the output voltage of the converters used in high‐voltage applications or where there are difficulties in employing sensors in measurement of the output voltage due to high price or implementation problems.

Originality/value

The originality of the paper is to present an analytical model for dc‐ac‐dc parallel resonant converters. Using this model makes it possible to estimate the output voltage of the converter using the dc‐link voltage and the phase‐shift angle. The proposed model provides researchers to regulate the output voltage of the converters using feed‐forward control technique.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

İres İskender, Yıldırım Üçtuğ and H.Bülent Ertan

To analyze the operating performance of an ac‐dc‐ac‐dc PWM parallel resonant converter operating at lagging power factor mode controlled based on fuzzy logic control method.

1340

Abstract

Purpose

To analyze the operating performance of an ac‐dc‐ac‐dc PWM parallel resonant converter operating at lagging power factor mode controlled based on fuzzy logic control method.

Design/methodology/approach

A range of published works relevant to dc‐ac‐dc converters and their control methods based on PWM technique are evaluated and their limitations in converter output voltage control are indicated in the first section of this paper. The Simulink model and different stages of the converter are described in the second section. In Section 3, the general mathematical model of the system is derived and the phase‐shift PWM switching technique is explained. The equivalent circuit of the high‐voltage high‐frequency transformer used in the converter and the effects of the transformer parameters on the converter operation are presented in Section 4. In Section 5, fuzzy logic control and the basic concepts of this method are described and its application to the proposed converter output voltage control is explained. In Section 6, the Simulink simulation results of the fuzzy logic control application are given for different operating conditions. In Section 7, an overview of the hardware used in this study is presented and the experimental results are given to show the performance of the controller. Finally, Section 8 gives the conclusions of the study.

Findings

The fuzzy logic control which is a suitable method for nonlinear systems such as the converter proposed in this paper, is successfully applied for output voltage control of the converter. The controller performance is satisfied. The phase‐shift angle of the converter is used as the control parameter. The paper also presents how the parasitic parameters of the transformer used in high‐voltage applications can be used as the circuit resonant elements.

Research limitations/implications

In preparing this paper, the resources books and periodic journals existing in our university library and also the English resources relative to dc‐ac‐dc converters reachable through the internet were researched.

Practical implications

The suggested control method can be used in the control of linear and nonlinear systems. The study carried out in this paper is also a very good approach to be used in high‐voltage high‐frequency converters output voltage control.

Originality/value

Since, the control approach proposed in this paper does not require the information on converter and transformer parameters that affect the converter output voltage, so it can effectively be used in applications where there are parameter variation problems. The design of the transformer for the required load, finding an optimum operating frequency for the converter, and using the transformer parameters as resonant elements of the circuit to decrease the switching losses are the other contributions of this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Elzbieta Lesniewska

The purpose of this paper is to discuss the operation of new generation electromagnetic current-to-voltage transducer. The aim of research was analysis of behaviour of considered…

Abstract

Purpose

The purpose of this paper is to discuss the operation of new generation electromagnetic current-to-voltage transducer. The aim of research was analysis of behaviour of considered current-to-voltage transducers during operation. The main problem was to estimate whether the external fields are able to change the value of the secondary voltage and that the replacement of the casing material by a conductive or ferromagnetic material will increase the immunity of the transducer to external magnetic fields. The immunity of current-to-voltage transducers to the external fields is very important because it influences the proper functioning of the protection system.

Design/methodology/approach

The use of analytical methods to assess the influence of external fields was impossible due to the complexity of the geometry. The 3D computations were necessary because of different cross sections of circuit boards at different heights. Therefore the numerical 3D field-and-circuit method based on finite element method was applied. The wide range of dimensions in computation system, ranging from 0.15 mm (print paths) to 0.22 m, made it necessary to use the mesh of millions of elements. The division of this type of system into elements requires a diverse and extremely dense mesh in the area of printed circuits board (PCBs).

Findings

The 3D analysis of magnetic field distribution was performed for different external field effect upon a current-to-voltage transducer. The magnetic field distributions and the induced secondary voltage for several different cases were presented. As a conclusion it can be said that in this particular case the magnetic shield is most effective. The influence of external magnetic fields caused by currents passing through the other neighbouring phase bars near are insignificant for the transducer with non-magnetic core.

Practical implications

Commonly used in measuring and protection systems of the transmission lines are induction instrument transformers. The instrument transformers are very precise devices and their errors are counted in tenths of a per cent, and phase displacement of signals in minutes. Especially in HV systems they are very big and their cores are heavy. Replacement of instrument transformers by the current to voltage transducers cooperating with electronic measuring systems will reduce the size and cost of devices.

Originality/value

The requirements set for protective current transformers concern the transformation of currents, with high accuracy, especially at transient states. Therefore magnetic characteristics of their cores should be linear. It causes that cores are large and have some air gaps. Current-to-voltage transducers based on Rogowski coil are particularly suitable for the replacement of the protective current transformers because of their linearity. The traditional technologies used for making Rogowski coil consisted in winding a wire on a non-magnetic carcass. The development of technology has enabled the use of new technologies PCB high density interconnect in the production of Rogowski coil.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5