Search results

1 – 10 of 70
Article
Publication date: 16 September 2024

Xiaozeng Xu, Yikun Wu and Bo Zeng

Traditional grey models are integer order whitening differential models; these models are relatively effective for the prediction of regular raw data, but the prediction error of…

Abstract

Purpose

Traditional grey models are integer order whitening differential models; these models are relatively effective for the prediction of regular raw data, but the prediction error of irregular series or shock series is large, and the prediction effect is not ideal.

Design/methodology/approach

The new model realizes the dynamic expansion and optimization of the grey Bernoulli model. Meanwhile, it also enhances the variability and self-adaptability of the model structure. And nonlinear parameters are computed by the particle swarm optimization (PSO) algorithm.

Findings

Establishing a prediction model based on the raw data from the last six years, it is verified that the prediction performance of the new model is far superior to other mainstream grey prediction models, especially for irregular sequences and oscillating sequences. Ultimately, forecasting models are constructed to calculate various energy consumption aspects in Chongqing. The findings of this study offer a valuable reference for the government in shaping energy consumption policies and optimizing the energy structure.

Research limitations/implications

It is imperative to recognize its inherent limitations. Firstly, the fractional differential order of the model is restricted to 0 < a < 2, encompassing only a three-parameter model. Future investigations could delve into the development of a multi-parameter model applicable when a = 2. Secondly, this paper exclusively focuses on the model itself, neglecting the consideration of raw data preprocessing, such as smoothing operators, buffer operators and background values. Incorporating these factors could significantly enhance the model’s effectiveness, particularly in the context of medium-term or long-term predictions.

Practical implications

This contribution plays a constructive role in expanding the model repertoire of the grey prediction model. The utilization of the developed model for predicting total energy consumption, coal consumption, natural gas consumption, oil consumption and other energy sources from 2021 to 2022 validates the efficacy and feasibility of the innovative model.

Social implications

These findings, in turn, provide valuable guidance and decision-making support for both the Chinese Government and the Chongqing Government in optimizing energy structure and formulating effective energy policies.

Originality/value

This research holds significant importance in enriching the theoretical framework of the grey prediction model.

Highlights

The highlights of the paper are as follows:

  1. A novel grey Bernoulli prediction model is proposed to improve the model’s structure.

  2. Fractional derivative, fractional accumulating generation operator and Bernoulli equation are added to the new model.

  3. The proposed model can achieve full compatibility with the traditional mainstream grey prediction models.

  4. Energy consumption in Chongqing verifies that the performance of the new model is much better than that of the traditional grey models.

  5. The research provides a reference basis for the government to formulate energy consumption policies and optimize energy structure.

A novel grey Bernoulli prediction model is proposed to improve the model’s structure.

Fractional derivative, fractional accumulating generation operator and Bernoulli equation are added to the new model.

The proposed model can achieve full compatibility with the traditional mainstream grey prediction models.

Energy consumption in Chongqing verifies that the performance of the new model is much better than that of the traditional grey models.

The research provides a reference basis for the government to formulate energy consumption policies and optimize energy structure.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 12 September 2024

Zhanglin Peng, Tianci Yin, Xuhui Zhu, Xiaonong Lu and Xiaoyu Li

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method…

Abstract

Purpose

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method integrates textual and numerical information using TCN-BiGRU–Attention.

Design/methodology/approach

The Word2Vec model is initially employed to process the gathered textual data concerning battery-grade lithium carbonate. Subsequently, a dual-channel text-numerical extraction model, integrating TCN and BiGRU, is constructed to extract textual and numerical features separately. Following this, the attention mechanism is applied to extract fusion features from the textual and numerical data. Finally, the market price prediction results for battery-grade lithium carbonate are calculated and outputted using the fully connected layer.

Findings

Experiments in this study are carried out using datasets consisting of news and investor commentary. The findings reveal that the MFTBGAM model exhibits superior performance compared to alternative models, showing its efficacy in precisely forecasting the future market price of battery-grade lithium carbonate.

Research limitations/implications

The dataset analyzed in this study spans from 2020 to 2023, and thus, the forecast results are specifically relevant to this timeframe. Altering the sample data would necessitate repetition of the experimental process, resulting in different outcomes. Furthermore, recognizing that raw data might include noise and irrelevant information, future endeavors will explore efficient data preprocessing techniques to mitigate such issues, thereby enhancing the model’s predictive capabilities in long-term forecasting tasks.

Social implications

The price prediction model serves as a valuable tool for investors in the battery-grade lithium carbonate industry, facilitating informed investment decisions. By using the results of price prediction, investors can discern opportune moments for investment. Moreover, this study utilizes two distinct types of text information – news and investor comments – as independent sources of textual data input. This approach provides investors with a more precise and comprehensive understanding of market dynamics.

Originality/value

We propose a novel price prediction method based on TCN-BiGRU Attention for “text-numerical” information fusion. We separately use two types of textual information, news and investor comments, for prediction to enhance the model's effectiveness and generalization ability. Additionally, we utilize news datasets including both titles and content to improve the accuracy of battery-grade lithium carbonate market price predictions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 September 2024

Bingzi Jin, Xiaojie Xu and Yun Zhang

Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate…

Abstract

Purpose

Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate on the energy sector and explore the trading volume prediction issue for the thermal coal futures traded in Zhengzhou Commodity Exchange in China with daily data spanning January 2016–December 2020.

Design/methodology/approach

The nonlinear autoregressive neural network is adopted for this purpose and prediction performance is examined based upon a variety of settings over algorithms for model estimations, numbers of hidden neurons and delays and ratios for splitting the trading volume series into training, validation and testing phases.

Findings

A relatively simple model setting is arrived at that leads to predictions of good accuracy and stabilities and maintains small prediction errors up to the 99.273th quantile of the observed trading volume.

Originality/value

The results could, on one hand, serve as standalone technical trading volume predictions. They could, on the other hand, be combined with different (fundamental) prediction results for forming perspectives of trading trends and carrying out policy analysis.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 March 2023

Farouq Sammour, Heba Alkailani, Ghaleb J. Sweis, Rateb J. Sweis, Wasan Maaitah and Abdulla Alashkar

Demand forecasts are a key component of planning efforts and are crucial for managing core operations. This study aims to evaluate the use of several machine learning (ML…

Abstract

Purpose

Demand forecasts are a key component of planning efforts and are crucial for managing core operations. This study aims to evaluate the use of several machine learning (ML) algorithms to forecast demand for residential construction in Jordan.

Design/methodology/approach

The identification and selection of variables and ML algorithms that are related to the demand for residential construction are indicated using a literature review. Feature selection was done by using a stepwise backward elimination. The developed algorithm’s accuracy has been demonstrated by comparing the ML predictions with real residual values and compared based on the coefficient of determination.

Findings

Nine economic indicators were selected to develop the demand models. Elastic-Net showed the highest accuracy of (0.838) versus artificial neural networkwith an accuracy of (0.727), followed by Eureqa with an accuracy of (0.715) and the Extra Trees with an accuracy of (0.703). According to the results of the best-performing model forecast, Jordan’s 2023 first-quarter demand for residential construction is anticipated to rise by 11.5% from the same quarter of the year 2022.

Originality/value

The results of this study extend to the existing body of knowledge through the identification of the most influential variables in the Jordanian residential construction industry. In addition, the models developed will enable users in the fields of construction engineering to make reliable demand forecasts while also assisting in effective financial decision-making.

Details

Construction Innovation , vol. 24 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 19 September 2024

Ning Yuan and Meijuan Li

This study identifies a methodology to explore the issues of enterprise innovation ecosystem health (EIEH).

Abstract

Purpose

This study identifies a methodology to explore the issues of enterprise innovation ecosystem health (EIEH).

Design/methodology/approach

First, this study constructs the indicator system of EIEH based on the research objective; second, the dynamic vertical projection method (DVPM) and entropy weight method are proposed to analyze the status and influencing factors of EIEH; finally, the future development of EIEH is analyzed using GM (1,1).

Findings

In terms of methodology, the DVPM can effectively analyze EIEH, which can not only analyze the development status and potential of EIEH every year but also analyze the comprehensive state of EIEH for many years. In terms of practice, the value and grade of EIEH in China have been gradually increasing from 2016 to 2020, but the overall development is unbalanced, and five key factors affecting EIEH have been identified. The EIEH in China is predicted to steadily grow from 2021 to 2025.

Originality/value

The analytical method employed in this study can effectively analyze EIEH, which provides a new analytical perspective for the evaluation of EIEH and enriches the research content of the enterprise innovation ecosystem (EIE). By analyzing the results, we can gain a comprehensive understanding of the state of different EIEs, enabling each EIE to design tailored remedial measures to enhance EIEH and achieve sustainable development.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 24 May 2024

Long Li, Binyang Chen and Jiangli Yu

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point…

Abstract

Purpose

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point selection methods do not consider the influence of the variability of thermal sensitive points on thermal error modeling and compensation. This paper considers the variability of thermal sensitive points, and aims to propose a sensitive temperature measurement point selection method and thermal error modeling method that can reduce the influence of thermal sensitive point variability.

Design/methodology/approach

Taking the truss robot as the experimental object, the finite element method is used to construct the simulation model of the truss robot, and the temperature measurement point layout scheme is designed based on the simulation model to collect the temperature and thermal error data. After the clustering of the temperature measurement point data is completed, the improved attention mechanism is used to extract the temperature data of the key time steps of the temperature measurement points in each category for thermal error modeling.

Findings

By comparing with the thermal error modeling method of the conventional fixed sensitive temperature measurement points, it is proved that the method proposed in this paper is more flexible in the processing of sensitive temperature measurement points and more stable in prediction accuracy.

Originality/value

The Grey Attention-Long Short Term Memory (GA-LSTM) thermal error prediction model proposed in this paper can reduce the influence of the variability of thermal sensitive points on the accuracy of thermal error modeling in long-term processing, and improve the accuracy of thermal error prediction model, which has certain application value. It has guiding significance for thermal error compensation prediction.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 September 2024

Ashish Arunrao Desai and Subim Khan

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin…

Abstract

Purpose

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin (NDR) from the polyethylene and polyurea group, is the goal of the study. The focus is on showing how Nd: YAG lasers may be used to precisely cut CFRP with NDR materials, emphasizing how useful they are for creating intricate and long-lasting components.

Design/methodology/approach

The study employs a systematic approach that includes complicated factorial designs, Taguchi L27 orthogonal array trials, Gray relational analysis (GRA) and machine learning predictions. The effects of laser cutting factors on CFRP with NDR geometry are investigated experimentally, with the goal of optimizing the cutting process for greater quality and efficiency. The approach employs data-driven decision-making with GRA, which improves cut quality and manufacturing efficiency while producing high-quality CFRP composites. Integration of machine learning models into the optimization process significantly boosts the precision and cost-effectiveness of laser cutting operations for CFRP materials.

Findings

The work uses Taguchi L27 orthogonal array trials for systematically explore the effects of specified parameters on CFRP cutting. The cutting process is then optimized using GRA, which identifies influential elements and determines the ideal parameter combination. In this paper, initially machining parameters are established at level L3P3C3A2, and the optimal machining parameters are determined to be at levels L3P2C3A3 and L3P2C1A2, based on predictions and experimental results. Furthermore, the study uses machine learning prediction models to continuously update and optimize kerf parameters, resulting in high-quality cuts at a lower cost. Overall, the study presents a holistic method to optimize CFRP cutting processes employing sophisticated techniques such as GRA and machine learning, resulting in better quality and efficiency in manufacturing operations.

Originality/value

The novel concept is in precisely measuring the kerf width and deviation in CFRP samples of NDR using sophisticated imaging techniques like SEM, which improves analysis and precision. The newly produced resin from the polyethylene and polyurea group with carbon fiber offers a more precise and comprehensive understanding of the material's behavior under different cutting settings, which makes it novel for kerf width and kerf deviation in their studies. To optimize laser cutting settings in real time while considering laser machining conditions, the study incorporates material insights into machine learning models.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 8 February 2024

Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis

10878

Abstract

Purpose

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).

Design/methodology/approach

The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.

Findings

The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.

Research limitations/implications

In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.

Practical implications

The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.

Originality/value

To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 70