Search results

1 – 4 of 4
Article
Publication date: 21 March 2024

Ahmad Hadipour, Zahra Mahmoudi, Saeed Manoochehri, Heshmatollah Ebrahimi-Najafabadi and Zahra Hesari

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to…

Abstract

Purpose

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to oxidation, various studies have investigated the production of olive oil particles. The purpose of this study was to use chitosan and sodium alginate as the vehicle polymers for olive oil.

Design/methodology/approach

The gelation method used to prepare the sodium alginate miliparticles containing olive oil and particles were coated with chitosan. Morphology and size, zeta potential, infrared spectrum of olive oil miliparticles, encapsulation efficiency and oil release profile were investigated. Among 12 primary fabricated formulations, formulations F5 (olive oil loaded alginate miliparticles) and F11 (olive oil loaded alginate miliparticles + chitosan coat) were selected for further evaluations.

Findings

The size of the miliparticles was in the range of 1,100–1,600 µm. Particles had a spherical appearance, and chitosan coat made a smoother surface according to the scanning electron microscopy. The zeta potential of miliparticles were −30 mV for F5 and +2.7 mV for F11. Fourier transform infrared analysis showed that there was no interaction between olive oil and other excipients. Encapsulation efficiency showed the highest value of 85% in 1:4 (olive oil:alginate solution) miliparticles in F11. Release study indicated a maximum release of 68.22% for F5 and 60.68% for F11 in 24 h (p-value < 0.016). Therefore, coating with chitosan had a marked effect on slowing the release of olive oil. These results indicated that olive oil in various amounts can be successfully encapsulated into the sodium-alginate capsules cross-linked with glutaraldehyde.

Originality/value

To the best of the authors’ knowledge, no study has used chitosan and sodium alginate as the vehicle polymers for microencapsulation of olive oil.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

152

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 28 February 2023

Boshra Ahmed Halo, Rashid Al-Yahyai, Abdullah Al-Sadi and Asma Al-Sibani

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and…

Abstract

Purpose

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and Talaromyces variabilis, in conferring drought tolerance in tomato plants.

Design/methodology/approach

Preserved endophytic fungi from a Rhazya stricta desert plant were adopted to obtain the required fungal treatment; tomatoes received fungal treatments directly in plastic trays and subsequently in pots. Drought was applied using 15% of PEG-6000 at two stages: flowering and fruiting. The following parameters were measured: pollen sterility, growth characteristics, morphological analysis and biochemical analysis, including proline, gibberellic acid (GA3) and chlorophyll measurements; thus, the data were analyzed statistically using SPSS software.

Findings

All applied endophytes significantly promoted pollen viability and tomato yield under stressed and nonstressed conditions. Interestingly, these endophytes significantly enhanced the number of trichomes under drought stress and promoted tomato fruit quality. The colonized tomato plants accumulated a high proline level under drought stress but lower than un-inoculated stressed plants. Also, a significant rise in growth characteristics was observed by A. fumigatus and A. terreus under normal conditions. Moreover, both raised GA3 levels under drought-stressed and nonstressed conditions. Also these two endophytes enhanced chlorophyll and carotenoid contents under drought stress. Fruit characteristics were enhanced by nonstressed T. variabilis and stressed A. fumigatus.

Originality/value

The present endophytic fungi provide impressive benefits to their host in normal and drought-stressed conditions. Consequently, they represent valuable sources as sustainable and environmentally friendly alternatives to mitigate drought stress.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Access

Year

Last 6 months (4)

Content type

1 – 4 of 4