Search results

1 – 1 of 1
Article
Publication date: 30 May 2019

Sarah O’Connell, Glenn Reynders, Federico Seri, Raymond Sterling and Marcus M. Keane

The purpose of this paper is to standardised four-step flexibility assessment methodology for evaluating the available electrical load reduction or increase a building can provide…

Abstract

Purpose

The purpose of this paper is to standardised four-step flexibility assessment methodology for evaluating the available electrical load reduction or increase a building can provide in response to a signal from an aggregator or grid operator.

Design/methodology/approach

The four steps in the methodology consist of Step 1: systems, loads, storage and generation identification; Step 2: flexibility characterisation; Step 3: scenario modelling; and Step 4: key performance indicator (KPI) label.

Findings

A detailed case study for one building, validated through on-site experiments, verified the feasibility and accuracy of the approach.

Research limitations/implications

The results were benchmarked against available demonstration studies but could benefit from the future development of standardised benchmarks.

Practical implications

The ease of implementation enables building operators to quickly and cost effectively evaluate the flexibility of their building. By clearly defining the flexibility range, the KPI label enables contract negotiation between stakeholders for demand side services. It may also be applicable as a smart readiness indicator.

Social implications

The novel KPI label has the capability to operationalise the concept of building flexibility to a wider spectrum of society, enabling smart grid demand response roll-out to residential and small commercial customers.

Originality/value

This paper fulfils an identified need for an early stage flexibility assessment which explicitly includes source selection that can be implemented in an offline manner without the need for extensive real-time data acquisition, ICT platforms or additional metre and sensor installations.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 1 of 1