Search results

1 – 4 of 4
Article
Publication date: 11 November 2013

Andrea G. Chiariello, Carlo Forestiere, Giovanni Miano and Antonio Maffucci

Nowadays, nano-antennas or nanoscale absorbers made by innovative materials such as carbon nanotubes are gaining more and more interest, because of their outstanding features. The…

1202

Abstract

Purpose

Nowadays, nano-antennas or nanoscale absorbers made by innovative materials such as carbon nanotubes are gaining more and more interest, because of their outstanding features. The purpose of this paper is to investigate the scattering properties of carbon nanotubes, either isolated or arranged in arrays. The peculiar behaviour of such innovative materials is studied, taking also into account the finite length of the structure and the dependence of the scattering field from the operating temperature.

Design/methodology/approach

First a model is presented for the electrical transport along the carbon nanotubes, based on Boltzmann quasi-classical transport theory. The model includes quantistic and inertial phenomena observed in the carbon nanotube electrodynamics. The model also includes the effects of temperature. Using this electrodynamical model, the electromagnetic formulation of the scattering problem is cast in terms of a Pocklington-like equation. The numerical solution is obtained by means of the Galerkin method, with special care in handling the logarithmic singularity of the kernel. Case studies are carried out, either referred to isolated single-wall carbon nanotubes (SWCNTs) and array of SWCNTs.

Findings

The scattering properties of SWCNT are strongly influenced by the temperature and by the distance between the tubes. As temperature increases, the amplitude of the resonance peaks decreases, at a rate which is double the rate of changes of temperature. The resonance frequencies are insensitive to temperature. As for the distance between the tubes in an array, it influence the scattering resonance introducing a shift in the resonance frequencies which is appreciable for distances lower than the semi-length of the CNT. For higher distances the CNT scattered field may be regarded as the sum of the fields emitted by each CNT, as if they were isolated.

Research limitations/implications

As far as now only SWCNTs have been studied. The multi-wall carbon nanotubes would show a richer behaviour with temperature, due to the joint effect of reduction of the mean free path and increase of the number of conducting channels, as temperature increases.

Practical implications

Possible use of carbon nanotubes as absorbing material or scatterers.

Originality/value

The model presented here is based on a self-consistent and physically meaningful description of the CNT electrodynamics, which takes rigorously into account the effect of temperature, size and chirality of each CNT.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Andrea Gaetano Chiariello, Giovanni Miano, Antonio Maffucci, Fabio Villone and Walter Zamboni

To investigate the possible application of carbon nanotubes (CNTs) as interconnects and antennas.

1398

Abstract

Purpose

To investigate the possible application of carbon nanotubes (CNTs) as interconnects and antennas.

Design/methodology/approach

An electromagnetic macroscopic modelling of CNT is derived. The conduction electrons of the nanotube are considered as a 2D fluid moving on the surface representing the positive ion lattice. The linearized Euler's equation describing the fluid motion is used as a macroscopic constitutive relationship to be coupled to Maxwell's equation. A surface integral formulation coupled to the fluid model is solved numerically using a finite element method. For peculiar configurations, transmission line‐like parameters of CNTs are derived.

Findings

Single wall CNT interconnects, due to the high resistance and characteristic impedance with respect to ideally scaled silicon technology, should be used in arrays and bundles.

Research limitations/implications

Only single wall CNTs are considered.

Originality/value

The paper present a novel approach to CNTs and provides a comparison among the behaviour of CNTs with respect to ideally‐scaled silicon technology.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Giovanni Miano, Fabio Villone and Walter Zamboni

To study optical resonances in metallic nanoparticles.

Abstract

Purpose

To study optical resonances in metallic nanoparticles.

Design/methodology/approach

The metallic nanoparticle is modeled as a dielectric body dispersive in frequency with assigned dielectric constant. The electric field is expressed as function of the charge distribution through an integral formulation. By imposing the boundary conditions on the nanoparticle surface, the equations for the induced charge in the nanoparticle is obtained. The numerical solution of such equations allows to treat arbitrary geometries and to estimate the effects of deviations from ideality on the resonance values.

Findings

Plasmon resonances in metallic nanoparticles can be safely studied with an electro‐quasistatic approximation. The resonance frequencies depend greatly on the details of the geometry of the nanoparticles.

Research limitations/implications

The free‐space wavelength is supposed to be much greater than the largest characteristic dimension of the nanoparticles. Consequently, a electro‐quasistatic model is used to evaluate the distribution of the charges induced in the metallic nanoparticle.

Originality/value

Two methods are presented for the evaluation of the resonance frequencies starting from the numerical solution for a given geometry.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 23 May 2019

Andrey I. Pilipenko, Vasiliy I. Dikhtiar, Nina M. Baranova and Zoya A. Pilipenko

The chapter contains a methodology for formalized evaluation of the public fiscal policy from the view point of its impact on the financial stability of a national economy using…

Abstract

The chapter contains a methodology for formalized evaluation of the public fiscal policy from the view point of its impact on the financial stability of a national economy using the example of the Russian Federation and taking into account the fiscal multipliers’ effects. The significance of this problem is predetermined by recent trends in Russia’s development, when the national economy legs twice behind the world indicators. Taking into account the importance of the Russian budget system as a mechanism for the redistribution of gross domestic product (GDP), the financial stability safeguarding has been connected with the public finance sustainability and with the federal budget revenues and expenditures equilibrium. There are used the methodology of analysis of economic systems’ dynamic factors of financial stability as well as fiscal multipliers’ effects, aiming at managing national economy’s long-term development with the ultimate purpose to maintain the GDP growth rates. Taking into account the fiscal multipliers’ values, the model comparisons of the macroeconomics and budget parameters’ dynamics prove the necessity of the budget consolidation policy in 2018–2020 provided that the budget expenditures efficiency increases. The latter has been proved by modeling dependences represented by the fiscal multipliers’ effects in terms of national financial stability.

1 – 4 of 4