Search results

1 – 10 of 716
Article
Publication date: 3 March 2023

Yanbing Ni, Yizhang Cui, Shilei Jia, Chenghao Lu and Wenliang Lu

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one…

Abstract

Purpose

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one translational and two rotational (1T2R) parallel power head and to improve the error compensation effect by improving the properties of the error identification matrix.

Design/methodology/approach

First, a general mapping model between the endpoint synthesis error is established and each geometric error source. Second, a model for optimizing the position and attitude trajectory of error measurement based on sensitivity analysis results is proposed, providing a basis for optimizing the error measurement trajectory of the mechanism in the working space. Finally, distance error measurement information and principal component analysis (PCA) ideas are used to construct an error identification matrix. The robustness and compensation effect of the identification algorithm were verified by simulation and through experiments.

Findings

Through sensitivity analysis, it is found that the distribution of the sensitivity coefficient of each error source in the plane of the workspace can approximately represent its distribution in the workspace, and when the end of the mechanism moves in a circle with a large nutation angle, the comprehensive influence coefficient of each sensitivity is the largest. Residual analysis shows that the robustness of the identification algorithm with the idea of PCA is improved. Through experiments, it is found that the compensation effect is improved.

Originality/value

A model for optimizing the position and attitude trajectory of error measurement is proposed, which can effectively improve the error measurement efficiency of the 1T2R parallel mechanism. In addition, the PCA idea is introduced. A least-squares PCA error identification algorithm that improves the robustness of the identification algorithm by improving the property of the identification matrix is proposed, and the compensation effect is improved. This method has been verified by experiments on 1T2R parallel mechanism and can be extended to other similar parallel mechanisms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 May 2023

Minh Thi Tran and Son Thai

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with…

Abstract

Purpose

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.

Design/methodology/approach

A numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.

Findings

The results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.

Originality/value

Although there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 November 2022

Pablo Zapico, Fernando Peña, Gonzalo Valiño, José Carlos Rico, Víctor Meana and Sabino Mateos

The lack of geometric and dimensional accuracy of parts produced by additive manufacturing (AM) is directly related to the machine, material and process used. This paper aims to…

116

Abstract

Purpose

The lack of geometric and dimensional accuracy of parts produced by additive manufacturing (AM) is directly related to the machine, material and process used. This paper aims to propose a method for the analysis and compensation of machine-related geometric errors applicable to any AM machine, regardless of the manufacturing process and technology used.

Design/methodology/approach

For this purpose, an error calculation model inspired by those used in computerized numerical control machines and coordinate measuring machines was developed. The error functions of the model were determined from the position deviations of a set of virtual points that are not sensitive to material and process errors. These points were obtained from the measurement of an ad hoc designed and manufactured master artefact. To validate the model, off-line compensation was applied to both the original designed artefact and an example part.

Findings

The geometric deviations in both cases were significantly smaller than those found before applying the geometric compensation. Dimensional enhancements were also achieved on the example part by using a correction parameter available in the three-dimensional printing software, whose value was adjusted from the measurement of the geometrically compensated master artefact.

Research limitations/implications

The errors that persist in the part derive from both material and process. Compensation for these type of errors requires a detailed analysis of the influencing parameters, which will be the subject of future research.

Originality/value

The use of the virtual-point-based error model increases the quality of additively manufactured parts and can be used in any AM system.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2024

Siming Cao, Hongfeng Wang, Yingjie Guo, Weidong Zhu and Yinglin Ke

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance…

Abstract

Purpose

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance relative accuracy of the dual-robot system through direct compensation of relative errors. To achieve this, a novel calibration-driven transfer learning method is proposed for relative error prediction in dual-robot systems.

Design/methodology/approach

A novel local product of exponential (POE) model with minimal parameters is proposed for error modeling. And a two-step method is presented to identify both geometric and nongeometric parameters for the mono-robots. Using the identified parameters, two calibrated models are established and combined as one dual-robot model, generating error data between the nominal and calibrated models’ outputs. Subsequently, the calibration-driven transfer, involving pretraining a neural network with sufficient generated error data and fine-tuning with a small measured data set, is introduced, enabling knowledge transfer and thereby obtaining a high-precision relative error predictor.

Findings

Experimental validation is conducted, and the results demonstrate that the proposed method has reduced the maximum and average relative errors by 45.1% and 30.6% compared with the calibrated model, yielding the values of 0.594 mm and 0.255 mm, respectively.

Originality/value

First, the proposed calibration-driven transfer method innovatively adopts the calibrated model as a data generator to address the issue of real data scarcity. It achieves high-accuracy relative error prediction with only a small measured data set, significantly enhancing error compensation efficiency. Second, the proposed local POE model achieves model minimality without the need for complex redundant parameter partitioning operations, ensuring stability and robustness in parameter identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 June 2023

Margarita Ntousia, Ioannis Fudos, Spyridon Moschopoulos and Vasiliki Stamati

Objects fabricated using additive manufacturing (AM) technologies often suffer from dimensional accuracy issues and other part-specific problems. This study aims to present a…

Abstract

Purpose

Objects fabricated using additive manufacturing (AM) technologies often suffer from dimensional accuracy issues and other part-specific problems. This study aims to present a framework for estimating the printability of a computer-aided design (CAD) model that expresses the probability that the model is fabricated correctly via an AM technology for a specific application.

Design/methodology/approach

This study predicts the dimensional deviations of the manufactured object per vertex and per part using a machine learning approach. The input to the error prediction artificial neural network (ANN) is per vertex information extracted from the mesh of the model to be manufactured. The output of the ANN is the estimated average per vertex error for the fabricated object. This error is then used along with other global and per part information in a framework for estimating the printability of the model, that is, the probability of being fabricated correctly on a certain AM technology, for a specific application domain.

Findings

A thorough experimental evaluation was conducted on binder jetting technology for both the error prediction approach and the printability estimation framework.

Originality/value

This study presents a method for predicting dimensional errors with high accuracy and a completely novel approach for estimating the probability of a CAD model to be fabricated without significant failures or errors that make it inappropriate for a specific application.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2024

Fernando Peña, José Carlos Rico, Pablo Zapico, Gonzalo Valiño and Sabino Mateos

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM…

86

Abstract

Purpose

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM) process when building a part, regardless of the complexity of the layer geometry.

Design/methodology/approach

The procedure is based on comparing the real layer contours to the nominal ones extracted from the STL model of the part. Considering alignment and form deviations, the compensation algorithm generates new compensated contours that match the nominal ones as closely as possible. To assess the compensation effectiveness, two case studies were analysed. In the first case, the parts were not manufactured, but the distortions were simulated using a predictive model. In the second example, the test part was actually manufactured, and the distortions were measured on a coordinate measuring machine.

Findings

The geometric deviations detected in both case studies, as evaluated by various quality indicators, reduced significantly after applying the compensation procedure, meaning that the compensated and nominal contours were better matched both in shape and size.

Research limitations/implications

Although large contours showed deviations close to zero, dimensional overcompensation was observed when applied to small contours. The compensation procedure could be enhanced if the applied compensation factor took into account the contour size of the analysed layer and other geometric parameters that could have an influence.

Originality/value

The presented method of compensation is applicable to layers of any shape obtained in any AM process.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2023

Hao Wang, Hamzeh Al Shraida and Yu Jin

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for…

Abstract

Purpose

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.

Design/methodology/approach

A sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.

Findings

The proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.

Practical implications

Based on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.

Originality/value

This work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 October 2023

Yangze Liang and Zhao Xu

Monitoring of the quality of precast concrete (PC) components is crucial for the success of prefabricated construction projects. Currently, quality monitoring of PC components…

Abstract

Purpose

Monitoring of the quality of precast concrete (PC) components is crucial for the success of prefabricated construction projects. Currently, quality monitoring of PC components during the construction phase is predominantly done manually, resulting in low efficiency and hindering the progress of intelligent construction. This paper presents an intelligent inspection method for assessing the appearance quality of PC components, utilizing an enhanced you look only once (YOLO) model and multi-source data. The aim of this research is to achieve automated management of the appearance quality of precast components in the prefabricated construction process through digital means.

Design/methodology/approach

The paper begins by establishing an improved YOLO model and an image dataset for evaluating appearance quality. Through object detection in the images, a preliminary and efficient assessment of the precast components' appearance quality is achieved. Moreover, the detection results are mapped onto the point cloud for high-precision quality inspection. In the case of precast components with quality defects, precise quality inspection is conducted by combining the three-dimensional model data obtained from forward design conversion with the captured point cloud data through registration. Additionally, the paper proposes a framework for an automated inspection platform dedicated to assessing appearance quality in prefabricated buildings, encompassing the platform's hardware network.

Findings

The improved YOLO model achieved a best mean average precision of 85.02% on the VOC2007 dataset, surpassing the performance of most similar models. After targeted training, the model exhibits excellent recognition capabilities for the four common appearance quality defects. When mapped onto the point cloud, the accuracy of quality inspection based on point cloud data and forward design is within 0.1 mm. The appearance quality inspection platform enables feedback and optimization of quality issues.

Originality/value

The proposed method in this study enables high-precision, visualized and automated detection of the appearance quality of PC components. It effectively meets the demand for quality inspection of precast components on construction sites of prefabricated buildings, providing technological support for the development of intelligent construction. The design of the appearance quality inspection platform's logic and framework facilitates the integration of the method, laying the foundation for efficient quality management in the future.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 June 2023

Pawan Bishnoi and Pankaj Chandna

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Abstract

Purpose

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Design/methodology/approach

The geometric accuracy has been measured in terms of half-cone-angle, concentricity, roundness and wall-straightness errors. The Taguchi Orthogonal-Array L9 with desirability-function-analysis has been used to achieve improved accuracy.

Findings

To achieve maximum geometric accuracy, the optimum setting having a tooltip diameter of 10 mm, a step-size of 0.2 mm and a tool rotation speed (TRS) of 900 RPM has been derived. With this setting, the half-cone-angle accuracy increases by 42.96%, the concentricity errors decrease by 47.36%, the roundness errors decline by 45.2% and the wall straightness errors reduce by 1.06%.

Practical implications

Superalloy 625 is a widespread nickel-based alloy, finding enormous applications in aerospace, marine and chemical industries.

Originality/value

It has been recommended to increase TRS, reduce step-size and use moderate size tooltip diameter to enhance geometric accuracy. Step-size has been found to be the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 716