Search results

1 – 10 of 54
Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 May 2024

Swathi Pennapareddy, Ramprasad Srinivasan and Natarajan K.

Automatic dependent surveillance-broadcast (ADS-B) is the foundational technology of the next generation air transportation system defined by Federal Aviation Authority and is one…

Abstract

Purpose

Automatic dependent surveillance-broadcast (ADS-B) is the foundational technology of the next generation air transportation system defined by Federal Aviation Authority and is one of the most precise ways for tracking aircraft position. ADS-B is intended to provide greater situational awareness to the pilots by displaying the traffic information like aircraft ID, altitude, speed and other critical parameters on the Cockpit Display of Traffic Information displays in the cockpit. Unfortunately, due to the initial proposed nature of ADS-B protocol, it is neither encrypted nor has any other innate security mechanisms, which makes it an easy target for malicious attacks. The system is vulnerable to various active and passive attacks like message ingestion, message deletion, eavesdropping, jamming, etc., which has become an area of concern for the aviation industry. The purpose of this study is to propose a method based on modified advanced encryption standard (AES) algorithm to secure the ADS=B messages and increase the integrity of ADS-B data transmissions.

Design/methodology/approach

Though there are various cryptographic and non-cryptographic methods proposed to secure ADS-B data transmissions, it is evident that most of these systems have limitations in terms of cost, implementation or feasibility. The new proposed method implements AES encryption techniques on the ADS-B data on the sender side and correlated decryption mechanism at the receiver end. The system is designed based on the flight schedule data available from any flight planning systems and implementing the AES algorithm on the ADS-B data from each aircraft in the flight schedule.

Findings

The suitable hardware was developed using Raspberry pi, ESP32 and Ra-02. Several runs were done to verify the original message, transmitted data and received data. During transmission, encryption algorithm was being developed, which has got very high secured transmission, and during the reception, the data was secured. Field test was conducted to validate the transmission and quality. Several trials were done to validate the transmission process. The authors have successfully shown that the ADS-B data can be encrypted using AES algorithm. The authors are successful in transmitting and receiving the ADS-B data packet using the discussed hardware and software methodology. One major advantage of using the proposed solution is that the information received is encrypted, and the receiver ADS-B system can decrypt the messages on the receiving end. This clearly proves that when the data is received by an unknown receiver, the messages cannot be decrypted, as the receiver is not capable of decrypting the AES-authenticated messages transmitted by the authenticated source. Also, AES encryption is highly unlikely to be decrypted if the encryption key and the associated decryption key are not known.

Research limitations/implications

Implementation of the developed solution in actual onboard avionics systems is not within the scope of this research. Hence, assessing in the real-time distances is not covered.

Social implications

The authors propose to extend this as a software solution to the onboard avionics systems by considering the required architectural changes. This solution can also bring in positive results for unmanned air vehicles in addition to the commercial aircrafts. Enhancement of security to the key operational and navigation data elements is going to be invaluable for future air traffic management and saving lives of people.

Originality/value

The proposed solution has been practically implemented by developing the hardware and software as part of this research. This has been clearly brought out in the paper. The implementation has been tested using the actual ADS-B data/messages received from using the ADS-B receiver. The solution works perfectly, and this brings immense value to the aircraft-to-aircraft and aircraft-to-ground communications, specifically while using ADS-B data for communicating the position information. With the proposed architecture and minor software updates to the onboard avionics, this solution can enhance safety of flights.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 5 October 2023

Oke Hendra, Benny Kurnianto and Ika Endrawijaya

This study aimed to develop an adapted collaborative governance model for aviation human resource development in Indonesia's approved training organisations (ATO), considering the…

Abstract

Purpose

This study aimed to develop an adapted collaborative governance model for aviation human resource development in Indonesia's approved training organisations (ATO), considering the expected changes in the industry due to advanced technologies. The model, based on Ansell and Gash's approach, emphasizes multi-stakeholder collaboration to ensure workforce development aligns with industry and regulatory standards and accommodates technological advancements.

Design/methodology/approach

Qualitative methods, such as in-depth interviews and focus group discussions, were employed to collect and analyse data.

Findings

The results indicated that collaborative governance is a valuable tool for cultivating competent human resources and facilitating industry improvement in the face of rapid technological change.

Originality/value

The proposed model contributes significantly to the field by promoting inclusive and effective human resource development through the Centre for Aviation Human Resource Development (CAHRD), thereby preparing the Indonesian aviation industry for the impact of advanced technologies. Furthermore, this study contributes to the enhancement of Ansell and Gash's collaborative governance theoretical framework by effectively addressing its empirical gaps concerning vocational education and training challenges within Indonesia's air transportation sector.

Details

Higher Education, Skills and Work-Based Learning, vol. 14 no. 2
Type: Research Article
ISSN: 2042-3896

Keywords

Book part
Publication date: 6 May 2024

Nadia Gulko, Flor Silvestre Gerardou and Nadeeka Withanage

Corporate Social Responsibility (CSR) reporting has been widely accepted as a vital tool for communicating with stakeholders on a range of social, environmental, and governance…

Abstract

Corporate Social Responsibility (CSR) reporting has been widely accepted as a vital tool for communicating with stakeholders on a range of social, environmental, and governance issues, but how companies define, interpret, apply, integrate, and communicate their CSR efforts and impacts in corporate reporting is anything but a straightforward task. The purpose of this chapter is to explore the concept of materiality in CSR reporting and demonstrate practical examples of good CSR and Sustainable Development Goals (SDGs) reporting practices. We chose the aviation industry because of its economic relevance, constant growth, and future expected changes in the aftermath of COVID-19. In addition, airlines affect many of the SDGs directly and indirectly with contending results. This chapter is timely because of the growing willingness by companies to integrate CSR and environmental, social, and governance (ESG) thinking into the corporate strategy and business operations using materiality assessment and enhancing their competitive advantage and ability to maintain long-term value and because ESG and ethical investing have become part of the mainstream investing. Thus, this chapter contributes to an understanding of the wide range of existing and new reporting frameworks and regulations and reinforces the importance of discussing how this diversity of approaches can affect the work toward worldwide comparability of CSR and sustainability reporting.

Details

The Emerald Handbook of Ethical Finance and Corporate Social Responsibility
Type: Book
ISBN: 978-1-80455-406-7

Keywords

Article
Publication date: 20 March 2024

Ayse KUCUK YILMAZ, Konstantinos N. MALAGAS and Triant G. FLOURIS

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be…

Abstract

Purpose

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be implemented to ensure safety is and remains at the desired level. If the number of incidents and potential incidents that could lead to accidents and their impact rates are to be reduced operationally and administratively, aviation safety risks and sources of risk must be better understood, sources of risk identified, and the safety risk management framework designed in an organization-specific and organization-wide sustainable way. At this point, it is necessary to draw the conceptual framework well and to define the boundaries of the concepts well. In this study, a framework model that can be adapted to the organization is proposed to optimize the management of risks and provide both efficient and effective resource allocation and organizational structure design in its operations and management functions.

Design/methodology/approach

The qualitative research method – triple techniques – was deemed appropriate for this study, which aims to identify, examine, interpret and develop the situations of safety management models. In this context, document analysis, business process modeling technique and Delphi techniques from qualitative research methods were used via integration as the methodology of this research.

Findings

To manage dynamic civil aviation management activities and business processes effectively and efficiently, the risk management process is the building block of the “Proposed Process Model” that supports the decision-making processes of aviation organizations and managers. This “Framework Conceptual Model” building block also helps build capacity and resilience by enabling continuous development, organizational learning, and flexible structuring.

Research limitations/implications

This research is limited to air transportation and aviation safety management issues. This research is limited specifically to a safety-based risk management framework for the aviation industry. This research may have social implications as source saving, optimum resource use and capacity building will make a contribution to society and add value besides operational and practical implementation.

Social implications

This research may contribute to more safe operations and functions in the aviation industry.

Originality/value

Management and academia may gain considerable support from this research to manage their safety risks via a corporate-tailored risk management framework, both improving resilience and developing corporate capacity. With this model presented, decision-makers will have a guiding structure that can optimally manage the main risk types that may be encountered in the safety risk in the fields of suppliers, manufacturers, demand changes, logistics, information management, environmental, legal and regulatory. Existing studies in the literature are generally in the form of algorithms and cannot be used as a decision-making support tool. This model aims to fill the gap in the literature. In addition, added value may be created by applying this model to optimum management safety risks in the real aviation industry and its related sectors.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 March 2023

Amani Natheesha Karunathilake and Anuja Fernando

Air transport accounts for nearly 40% worth of the global trade cargo volume, where more than 50% of the air cargo is carried on passenger flights. Therefore, this paper aims to…

Abstract

Purpose

Air transport accounts for nearly 40% worth of the global trade cargo volume, where more than 50% of the air cargo is carried on passenger flights. Therefore, this paper aims to focus on identifying the influencing factors for both passenger and cargo demand-driven networks to smoothen the global supply chain.

Design/methodology/approach

The data for the study was collected through literature reviews and interviews with industry experts. The analytical hierarchy process was used to analyze the expert's opinions on the critical factors affecting air cargo demand growth. Regression analysis was conducted using the selected variables to develop a model to calculate air cargo demand growth.

Findings

According to the expert opinion, it was identified that facilities under airport capacities and facilities are mainly affected by the air cargo carried by combi carriers. The model was developed considering the air connectivity index and air cargo demand at destination variables.

Research limitations/implications

The factors identified here are mainly related to the current situation in Sri Lanka. Applying this methodology to other economic zones will add new factors related to their economic contexts and could be generalized as the influencing factors for the growth of air cargo demand by finding more results.

Originality/value

Previous studies have been conducted using different factors and models to forecast air cargo demand, and those did not consider demand from combi and all-cargo carriers together. More than 98% of air cargo trades in Sri Lanka are happening through combi carriers. Hence, Sri Lanka will be a best case study to analyze the behavior of combi carriers.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 54