Search results

1 – 10 of 11
Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 July 2022

Augustine Senanu Komla Kukah, De-Graft Owusu-Manu, Edward Badu and David John Edwards

Demand for private investment in infrastructure, notably in the power sector remains high, and this is anticipated to expand with the passage of time. Very little research…

Abstract

Purpose

Demand for private investment in infrastructure, notably in the power sector remains high, and this is anticipated to expand with the passage of time. Very little research currently exists on the power sector and specifically the private sector influencing factors (PSIFs) for entering into public–private partnerships (PPPs). The purpose of this study is to explore influencing factors for private sector participation in PPP power projects in Ghana.

Design/methodology/approach

Using purposive and snowball sampling techniques, questionnaires were used to gather responses from experts in the PPP power sector domain in a two-round Delphi survey. Reliability analysis was conducted using Cronbach’s alpha coefficient and level of agreement tested using Kendall’s concordance. Mean score ranking, analysis of variance (ANOVA) and Chi-square test were the main analysis conducted on the influencing factors.

Findings

The most significant PSIFs were: obtaining of investment support; improvement in private sector’s international image; synergy with public sector; sharing of risks; and gaining of profits. From ANOVA results, all the influencing factors had no significant different perception between the number of years in PPP practice and the motivations for the private sector entering into PPP power projects. Using Chi-square, the association between the variables indicated they were statistically significant.

Practical implications

The findings in this study are significant for multinational power generation firms that seek to enter the Ghanaian energy sector to help fill the generation gap and deficit.

Originality/value

The output of this research contributes to the checklist of influencing factors for private sector participation in PPP power projects and enhances the development of PPP practice.

Details

Journal of Facilities Management , vol. 22 no. 2
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 27 November 2023

Sharad Sharma, Rajesh Kumar Singh, Ruchi Mishra and Nachiappan (Nachi) Subramanian

This study aims to address three research questions pertaining to climate neutrality within the supply chain of metal and mining industry: (1) How can an organization implement…

Abstract

Purpose

This study aims to address three research questions pertaining to climate neutrality within the supply chain of metal and mining industry: (1) How can an organization implement practices related to climate neutrality in the supply chain? (2) How do members of the supply chain adopt different measures and essential processes to assist an organization in responding to climate change-related concerns? (3) How can the SAP-LAP framework assist in analyzing and proposing solutions to attain climate neutrality?

Design/methodology/approach

To address the proposed research questions concerning climate neutrality, this study employs a case study approach utilizing the SAP-LAP (situation, actor, process–learning, action, performance) framework. Within the SAP-LAP framework, adopting a natural resource-based perspective, the study thoroughly examines the intricacies and interactions among existing situations, pertinent actors and processes that impact climate initiatives within a metal and mining company.

Findings

The study's findings suggest that organizations can achieve the objective of climate neutrality by prioritizing resources and capabilities that lead to reduced GHG emissions, lower energy consumption and optimal resource utilization. The study further proposes key elements that significantly influence the pursuit of climate neutrality within enterprises.

Research limitations/implications

This study is one of the earliest contributions to the development of a holistic understanding of climate neutrality in the supply chain of the metal and mining industry.

Practical implications

The study will assist practitioners and policymakers in comprehending the present circumstances, actors and processes involved in enterprises' supply networks in order to attain climate neutrality in supply chains, as well as in taking the right steps to enhance performance.

Originality/value

This study presents a climate neutrality model and provides valuable insights into emission management, contributing to the achievement of the climate neutrality objective.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 21 November 2023

Nimasha Dilukshi Hulathdoowage, Gayani Karunasena, Nilupa Udawatta and Chunlu Liu

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance…

Abstract

Purpose

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance the climate-resilience of buildings. However, no single study comprehensively assesses the climate-resilience of retrofitting. The purpose of this study is to address this gap via a systematic literature review.

Design/methodology/approach

Quality journal studies were selected using the PRISMA method and analysed manually and using scientometrics. Three dimensions of climate-resilience, such as robustness, withstanding and recovery, were used to evaluate the contribution of retrofit measures for achieving climate-resilient houses across four climate zones: tropical, arid, temperate and cold.

Findings

Most passive measures can enhance the robustness of residential buildings but cannot verify for withstanding against immediate shocks and timely recovery. However, some passive measures, such as night-time ventilation, show excellent performance over all four climate zones. Active measures such as heating, ventilation and air conditioning and mechanical ventilation with heat recovery, can ensure climate-resilience in all three dimensions in the short-term but contribute to greenhouse gas emissions, further exacerbating the long-term climate. Integrating renewable energy sources can defeat this issue. Thus, all three retrofit strategies should appropriately be adopted together to achieve climate-resilient houses.

Research limitations/implications

Since the research is limited to secondary data, retrofit measures recommended in this research should be further investigated before application.

Originality/value

This review contributes to the knowledge domain of retrofitting by assessing the contribution of different retrofit measures to climate-resilience.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 December 2023

Majid Kanbaty, Andreas Hellmann, Lawrence Ang and Liyu He

Although photographs in sustainability reports are useful in conveying complex messages, they may also be used to manipulate the presentation of disclosures to exploit the limited…

Abstract

Purpose

Although photographs in sustainability reports are useful in conveying complex messages, they may also be used to manipulate the presentation of disclosures to exploit the limited cognitive processing capacity of humans. Therefore, this paper aims to examine the features of photographs aimed at capturing individuals’ attention through visual structures and evoking specific emotions through carefully chosen content. Furthermore, it examines whether such framing practice is explained by incentives for legitimizing behaviours and influencing reputation.

Design/methodology/approach

The authors conduct a content analysis of photographs in 154 sustainability reports published by US companies. The authors captured the nature of photographs, the context in which they are being used, their themes and emotional content and layout and interaction features to understand how photographs are used for attribute framing to influence information processing. Furthermore, the authors statistically examine the framing practice between companies with different characteristics to identify any patterns for the impression management use of photographs in sustainability reports.

Findings

Photographs are often large with a horizontal orientation to capture attention and show content viewed at eye level and in either medium or close-up shots to engage viewers. Furthermore, photographs are emotionally loaded with different themes such as depictions of people, technology and nature. These themes are used to predominately evoke positive emotions of awe, nurturance, pride, amusement and attachment. This practice is often used by companies in environmentally sensitive areas that have close consumer relationships or are covered controversially in the media.

Originality/value

The authors reveal reporting practices and identify photographic features that attract attention and convey emotions that go beyond aesthetic qualities. This is important because emotions conveyed through photographs can be potentially misleading and influence judgements subconsciously.

Details

Meditari Accountancy Research, vol. 32 no. 3
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

38

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last week (11)

Content type

Article (11)
1 – 10 of 11