Search results

1 – 10 of 184
Article
Publication date: 13 July 2023

S.M. Taghavi, V. Ghezavati, H. Mohammadi Bidhandi and S.M.J. Mirzapour Al-e-Hashem

This paper proposes a two-level supply chain including suppliers and manufacturers. The purpose of this paper is to design a resilient fuzzy risk-averse supply portfolio selection…

Abstract

Purpose

This paper proposes a two-level supply chain including suppliers and manufacturers. The purpose of this paper is to design a resilient fuzzy risk-averse supply portfolio selection approach with lead-time sensitive manufacturers under partial and complete supply facility disruption in addition to the operational risk of imprecise demand to minimize the mean-risk costs. This problem is analyzed for a risk-averse decision maker, and the authors use the conditional value-at-risk (CVaR) as a risk measure, which has particular applications in financial engineering.

Design/methodology/approach

The methodology of the current research includes two phases of conceptual model and mathematical model. In the conceptual model phase, a new supply portfolio selection problem is presented under disruption and operational risks for lead-time sensitive manufacturers and considers resilience strategies for risk-averse decision makers. In the mathematical model phase, the stages of risk-averse two-stage fuzzy-stochastic programming model are formulated according to the above conceptual model, which minimizes the mean-CVaR costs.

Findings

In this paper, several computational experiments were conducted with sensitivity analysis by GAMS (General algebraic modeling system) software to determine the efficiency and significance of the developed model. Results show that the sensitivity of manufacturers to the lead time as well as the occurrence of disruption and operational risks, significantly affect the structure of the supply portfolio selection; hence, manufacturers should be taken into account in the design of this problem.

Originality/value

The study proposes a new two-stage fuzzy-stochastic scenario-based mathematical programming model for the resilient supply portfolio selection for risk-averse decision-makers under disruption and operational risks. This model assumes that the manufacturers are sensitive to lead time, so the demand of manufacturers depends on the suppliers who provide them with services. To manage risks, this model also considers proactive (supplier fortification, pre-positioned emergency inventory) and reactive (revision of allocation decisions) resilience strategies.

Article
Publication date: 28 December 2023

Cláudia Rafaela Saraiva de Melo Simões Nascimento, Adiel Teixeira de Almeida-Filho and Rachel Perez Palha

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria…

Abstract

Purpose

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria, thereby meeting the needs of the institution and the existing constraints.

Design/methodology/approach

The research design follows a framework using technique for order preference by similarity to ideal solution (TOPSIS) associated with integer linear programming.

Findings

The method involves a flow of assessments allowing criteria and weights to be elicited where outcomes are based on the experts' intra-criteria assessment of alternatives and decision-makers' inter-criteria assessment. This is of utmost interest to public organizations, where selections must result in benefits and lower costs, integrating the experts' technical and management perspectives.

Social implications

Public institutions are characterized by having limited financial and personnel resources for project development despite having a high demand for requests not associated with profits, making it essential to have a framework that enables using multiple criteria to better evaluate the benefits related to these decisions.

Originality/value

The main contributions of this article are: (1) the proposition of a framework for selecting construction project portfolios considering the organization's strategic needs; (2) identifying quantitative and qualitative assessment criteria for project selection; (3) integrating TOPSIS with an optimization process for selecting the construction project portfolios and (4) providing a structured decision process for selecting the portfolio that best represents the interests of the institution within its limited resources and personnel.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 November 2022

Libiao Bai, Lan Wei, Yipei Zhang, Kanyin Zheng and Xinyu Zhou

Project portfolio risk (PPR) management plays an important role in promoting the smooth implementation of a project portfolio (PP). Accurate PPR prediction helps managers cope…

133

Abstract

Purpose

Project portfolio risk (PPR) management plays an important role in promoting the smooth implementation of a project portfolio (PP). Accurate PPR prediction helps managers cope with risks timely in complicated PP environments. However, studies on accurate PPR impact degree prediction, which consists of both risk occurrence probabilities and risk impact consequences considering project interactions, are limited. This study aims to model PPR prediction and expand PPR prediction tools.

Design/methodology/approach

In this study, the authors build a PPR prediction model based on a genetic algorithm and back-propagation neural network (GA-BPNN) integrated with entropy-trapezoidal fuzzy numbers. Then, the authors verify the proposed model with real data and obtain PPR impact degrees.

Findings

The test results indicate that the proposed method achieves an average absolute error of 0.002 and an average prediction accuracy rate of 97.8%. The former is reduced by 0.038, while the latter is improved by 32.1% when compared with the results of the original BPNN model. Finally, the authors conduct an index sensitivity analysis for identifying critical risks to effectively control them.

Originality/value

This study develops a hybrid PPR prediction model that integrates a GA-BPNN with entropy-trapezoidal fuzzy numbers. The authors use this model to predict PPR impact degrees, which consist of both risk occurrence probabilities and risk impact consequences considering project interactions. The results provide insights into PPR management.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 7 June 2023

Ruyue Han, Xingmei Li, Zhong Shen and Dongqing Jia

The consideration of the substitution phenomenon in the project portfolio selection problem can improve the robustness of project portfolio selection and help enterprises better…

Abstract

Purpose

The consideration of the substitution phenomenon in the project portfolio selection problem can improve the robustness of project portfolio selection and help enterprises better achieve their strategic objectives. However, the existence of inter-project risk propagation will have a negative impact on project substitution. This paper proposes a new framework for project portfolio selection and constructs a risk propagation model based on strategic objectives to study the impact of risk propagation on substitution in the project portfolio.

Design/methodology/approach

The authors first construct a risk propagation model based on strategic objectives to describe the risk propagation between projects. Then the project substitution phenomenon based on risk propagation is put forward, and the calculation method of substitution loss is given. Finally, a robust project portfolio selection framework based on strategic objectives considering risk propagation is constructed.

Findings

The analysis of a case study demonstrates that (1) With the increase of risk intensity, the strategic loss of the same project portfolio increases linearly, and under the same risk intensity, the more projects in the portfolio, the stronger the robustness. (2) Considering risk propagation, the effect of project substitution is significantly weakened, and the strategic loss rate of the project portfolio is significantly increased compared with that of a direct attack.

Originality/value

This study is the first to take the project substitution into account in the project portfolio selection process. Moreover, the authors describe inter-project risk propagation and analyze the impact of risk propagation on the project substitution phenomenon. Finally, the authors extend the evaluation index of robustness. This paper puts forward a new way to solve the problem of project portfolio selection.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 March 2023

Xu Zhang, Mark Goh, Sijun Bai and Zonghan Wang

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to…

Abstract

Purpose

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to make RRDs for single projects in project portfolios (SPPPs). Consequently, this study aims to bridge the gap in extant literature by developing an integrated approach to select risk response strategies (RRSs) for SPPPs considering objective adjustments and project interdependencies (PIs).

Design/methodology/approach

An integrated quality function deployment (QFD) method was used throughout this study. More so, a balanced score card (BSC) and stratified-Z-numbers-full consistency method (SZFUCOM) was applied to identify SPPP success criteria (SP3SC) to determine their weights. In addition, a spherical fuzzy set-design structure matrix (SFDSM) was used to quantify the correlation between the risks and the relationship between the risks and the predecessor projects. Consequently, the relationships between the risks and SP3SC and RRSs were described by the spherical fuzzy set (SFS) and Z-numbers, respectively. Besides, the results are weaved into QFD to transform SP3SC into risks and then into RRSs, while a linear optimization model is used to obtain the optimal RRSs. Lastly, a construction project portfolio (PP) was used to test the veracity of the results to prove their validity.

Findings

The approach to RRDs for single projects is observed to be different from that of SPPPs. In addition, this study finds that project portfolio objective adjustments (PPOAs) and PIs have significant impacts on RRDs given that they influence the risk priorities of independent single projects and SPPPs. Moreover, the application of an integrated QFD effectively synthesized the results from the findings of this study, as well as enabled companies to determine robust RRSs. Finally, the consistency results of the SZFUCOM were better than those of the triangular fuzzy number-full consistency method.

Originality/value

The study innovatively explores the method of RRDs for SPPP, which has been ignored by past research. SP3SC highly compatible with PP success is determined. Z-numbers are first used to evaluate the effect of RRSs to enhance the robustness of RRDs. The study proposes a method of RRDs comprehensively considering PPOAs and PIs, which provides robust methodological guidance for SPPP managers to control risks.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 July 2023

Deepak Datta Nirmal, K. Nageswara Reddy and Sujeet Kumar Singh

The main purpose of this study is to provide a comprehensive review and critical insights of the application of fuzzy methods in modeling, assessing and understanding the various…

Abstract

Purpose

The main purpose of this study is to provide a comprehensive review and critical insights of the application of fuzzy methods in modeling, assessing and understanding the various aspects of green and sustainable supply chains (SSCs).

Design/methodology/approach

The present study conducts a systematic literature review (SLR) and bibliometric analysis of 252 research articles. This study employs various tools such as VOSviewer version 1.6.10, Publish or Perish, Mendeley and Excel that aid in descriptive analysis, bibliometric analysis and network visualization. These tools have been used for performing citation analysis, top authors' analysis, co-occurrence of keywords, cluster and content analysis.

Findings

The authors have divided the literature into seven application areas and discussed detailed insights. This study has observed that research in the social sustainability area, including various issues like health and safety, labor rights, discrimination, etc. is scarce. Integration of the Industry 4.0 technologies like blockchain, big data analytics, Internet of Things (IoT) with the sustainable and green supply chain (GSC) is a promising field for future research.

Originality/value

The authors' contribution primarily lies in providing the integrated framework which shows the changing trends in the use of fuzzy methods in the sustainability area classifying and consolidating green and sustainable supply chain management (SSCM) literature in seven major areas where fuzzy methods are predominantly applied. These areas have been obtained after the analysis of clusters and content analysis of the literature presenting key insights from the past and developing the conceptual framework for future research studies.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 2 October 2023

Ahmet Selcuk Yalcin, Huseyin Selcuk Kilic and Emre Cevikcan

The purpose of this article is to develop a new model called strategy segmentation methodology (SSM) by combining the Kraljic portfolio matrix (KPM) and the supplier relationship…

Abstract

Purpose

The purpose of this article is to develop a new model called strategy segmentation methodology (SSM) by combining the Kraljic portfolio matrix (KPM) and the supplier relationship model (SRM) so that the buyer company can effectively conduct its relations with its suppliers.

Design/methodology/approach

The importance weights of the criteria defining the dimensions of each model are calculated with the single-valued neutrosophic analytical hierarchy process (SVN-AHP) method. Subsequently, the derived importance weights are employed in the single-valued neutrosophic technique for order preference by similarity to ideal solution (SVN-TOPSIS) method to obtain the scores of the suppliers and their supplied items. In order to illustrate the feasibility of the proposed methodology, a case study in the machinery industry is performed with the related comparative analysis.

Findings

The implementation of SSM enables to formulate various strategies to manage suppliers taking into account the items they procure, their capabilities and performance and the supplier–buyer relationship strength. Based on the proposed strategies, it is concluded that the firm in the case study should terminate its relationship with six of its suppliers.

Originality/value

Although KPM has become the basis of purchasing strategies for various businesses, it neglects the characteristics of suppliers and the buyer–supplier relationship. In this study, KPM is integrated with the SRM approach presented by Olsen and Ellram (1997) to overcome these disadvantages of KPM. The novel integration of the two approaches enables the realization of a robust and reliable supplier classification model.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 14 November 2023

Libiao Bai, Mengqin Yang, Tong Pan and Yichen Sun

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy…

Abstract

Purpose

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy relationships among projects complicate this problem. This study aims at constructing a project portfolio selection and scheduling (PPSS) model while quantifying the dynamic synergetic effects to provide decision support for managing PPSS problems.

Design/methodology/approach

This study develops a mathematical model for PPSS with the objective of maximal project portfolio benefits (PPBs). To make the results align with the strategy, comprehensive PPBs are divided into financial and non-financial aspects based on the balanced scorecard. Then, synergy benefits evolve dynamically in the time horizon, and system dynamics is employed to quantify them. Lastly, a case example is conducted to verify the applicability of the proposed model.

Findings

The proposed model is an applicable model for PPSS while incorporating dynamic synergy. It can help project managers obtain the results that which project should be selected and when it should start while achieving optimal PPBs.

Originality/value

This study complements prior PPSS research in two aspects. First, financial and non-financial PPBs are designed as new criteria for PPSS, making the results follow the strategy. Second, this study illuminates the dynamic characteristic of synergy and quantifies the synergetic effect. The proposed model provides insights into managing a PPSS effectively.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 September 2023

Mohammad Hossein Dehghani Sadrabadi, Ahmad Makui, Rouzbeh Ghousi and Armin Jabbarzadeh

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and…

Abstract

Purpose

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and employing business continuity planning to preserve risk management achievements is of considerable importance. The aforementioned idea is discussed in this study.

Design/methodology/approach

This study proposes a multi-objective optimization model for employing business continuity management and organizational resilience in a supply chain for responding to multiple interrelated disruptions. The improved augmented e-constraint and the scenario-based robust optimization methods are adopted for multi-objective programming and dealing with uncertainty, respectively. A case study of the automotive battery manufacturing industry is also considered to ensure real-world conformity of the model.

Findings

The results indicate that interactions between disruptions remarkably increase the supply chain's vulnerability. Choosing a higher fortification level for the supply chain and foreign suppliers reduces disruption impacts on resources and improves the supply chain's resilience and business continuity. Facilities dispersion, fortification of facilities, lateral transshipment, order deferral policy, dynamic capacity planning and direct transportation of products to markets are the most efficient resilience strategies in the under-study industry.

Originality/value

Applying resource allocation planning and portfolio selection to adopt preventive and reactive resilience strategies simultaneously to manage multiple interrelated disruptions in a real-world automotive battery manufacturing industry, maintaining the long-term achievements of supply chain resilience using business continuity management and dynamic capacity planning are the main contributions of the presented paper.

Article
Publication date: 7 March 2024

Manpreet Kaur, Amit Kumar and Anil Kumar Mittal

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered…

Abstract

Purpose

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field.

Design/methodology/approach

To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992–2022. The bibliographic data was processed and analysed using VOSviewer and R software.

Findings

The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, “Expert Systems with Applications” as the leading journal, “computer science” as the dominant subject area, and “stock price forecasting” as the predominantly explored research theme in the field. Furthermore, “portfolio optimization”, “sentiment analysis”, “algorithmic trading”, and “crisis prediction” are found as recently emerged research areas.

Originality/value

To the best of the authors’ knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 184