Search results

1 – 10 of over 21000
Article
Publication date: 1 August 2002

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from…

2511

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The bibliography at the end of the paper contains more than 1330 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1999–2002.

Details

Engineering Computations, vol. 19 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Rhodri LT Bevan, Etienne Boileau, Raoul van Loon, R.W. Lewis and P Nithiarasu

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not…

Abstract

Purpose

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared.

Design/methodology/approach

This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split.

Findings

In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations.

Originality/value

A comprehensive comparison between three versions of the CBS method is provided for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 September 2014

Annika Sorg and Manfred Bischoff

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete

Abstract

Purpose

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete microstructure of cohesive-frictional materials.

Design/methodology/approach

Finite element (FEM) based continuum methods are generally considered appropriate as long as solutions are smooth. However, when discontinuities like cracks and fragmentation appear and evolve, application of models that take into account (evolving) microstructures may be advantageous. One popular model to simulate behavior of cohesive-frictional materials is the discrete element method (DEM). However, even if the microscale is close to the macroscale, DEMs are computationally expensive and can only be applied to relatively small specimen sizes and time intervals. Hence, a method is desirable that combines efficiency of FEM with accuracy of DEM by adaptively switching from the continuous to the discrete model where necessary.

Findings

An existing method which allows smooth transition between discrete and continuous models is the quasicontinuum method, developed in the field of atomistic simulations. It is taken as a starting point and its concepts are extended to applications in structural mechanics in this paper. The kinematics in the method presented herein is obtained from FEM whereas DEM yields the constitutive behavior. With respect to the constitutive law, three levels of resolution – continuous, intermediate and discrete – are introduced.

Originality/value

The overall concept combines model adaptation with adaptive mesh refinement with the aim to obtain a most efficient and accurate solution.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2013

Leilei Wei, Xindong Zhang and Yinnian He

The purpose of this paper is to develop a fully discrete local discontinuous Galerkin (LDG) finite element method for solving a time‐fractional advection‐diffusion equation.

Abstract

Purpose

The purpose of this paper is to develop a fully discrete local discontinuous Galerkin (LDG) finite element method for solving a time‐fractional advection‐diffusion equation.

Design/methodology/approach

The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space.

Findings

By choosing the numerical fluxes carefully the authors' scheme is proved to be unconditionally stable and gets L2 error estimates of O(hk+1+(Δt)2+(Δt)α/2hk+(1/2)). Finally Numerical examples are performed to illustrate the effectiveness and the accuracy of the method.

Originality/value

The proposed method is different from the traditional LDG method, which discretes an equation in spatial direction and couples an ordinary differential equation (ODE) solver, such as Runger‐Kutta method. This fully discrete scheme is based on a finite difference method in time and local discontinuous Galerkin methods in space. Numerical examples prove that the authors' method is very effective. The present paper is the authors' first step towards an effective approach based on the discontinuous Galerkin method for the solution of fractional‐order problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 1996

J. SHI and E.F. TORO

A new approach for solving steady incompressible Navier‐Stokes equations is presented in this paper. This method extends the upwind Riemann‐problem‐based techniques to viscous…

Abstract

A new approach for solving steady incompressible Navier‐Stokes equations is presented in this paper. This method extends the upwind Riemann‐problem‐based techniques to viscous flows, which is obtained by applying modified artificial compressibility Navier‐Stokes equations and fully discrete high‐order numerical schemes for systems of advection‐diffusion equations. In this approach, utilizing the local Riemann solutions the steady incompressible viscous flows can be solved in a similar way to that of inviscid hyperbolic conservation laws. Numerical experiments on the driven cavity problem indicate that this approach can give satisfactory solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3544

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2018

Qili Tang

The purpose of this paper is to design a parallel finite element (FE) algorithm based on fully overlapping domain decomposition for solving the nonstationary incompressible…

Abstract

Purpose

The purpose of this paper is to design a parallel finite element (FE) algorithm based on fully overlapping domain decomposition for solving the nonstationary incompressible magnetohydrodynamics (MHD).

Design/methodology/approach

The fully discrete Euler implicit/explicit FE subproblems, which are defined in the whole domain with vast majority of the degrees of freedom associated with the particular subdomain, are solved in parallel. In each subproblem, the linear term is treated by implicit scheme and the nonlinear term is solved by explicit one.

Findings

For the algorithm, the almost unconditional convergence with optimal orders is validated by numerical tests. Some interesting phenomena are presented.

Originality/value

The proposed algorithm is effective, easy to realize with low communication costs and preferred for solving the strong nonlinear MHD system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2009

Yuri N. Skiba and Denis M. Filatov

The purpose of this paper is to suggest a new approach to the numerical simulation of shallow‐water flows both in plane domains and on the sphere.

Abstract

Purpose

The purpose of this paper is to suggest a new approach to the numerical simulation of shallow‐water flows both in plane domains and on the sphere.

Design/methodology/approach

The approach involves the technique of splitting of the model operator by geometric coordinates and by physical processes. Specially chosen temporal and spatial approximations result in one‐dimensional finite difference schemes that conserve the mass and the total energy. Therefore, the mass and the total energy of the whole two‐dimensional split scheme are kept constant too.

Findings

Explicit expressions for the schemes of arbitrary approximation orders in space are given. The schemes are shown to be mass‐ and energy‐conserving, and hence absolutely stable because the square root of the total energy is the norm of the solution. The schemes of the first four approximation orders are then tested by simulating nonlinear solitary waves generated by a model topography. In the analysis, the primary attention is given to the study of the time‐space structure of the numerical solutions.

Originality/value

The approach can be used for the numerical simulation of shallow‐water flows in domains of both Cartesian and spherical geometries, providing the solution adequate from the physical and mathematical standpoints in the sense of keeping its mass and total energy constant even when fully discrete shallow‐water models are applied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 August 2009

Jens H. Walther and Ivo F. Sbalzarini

The purpose of this paper is to present large‐scale parallel direct numerical simulations of granular flow, using a novel, portable software program for discrete element method…

Abstract

Purpose

The purpose of this paper is to present large‐scale parallel direct numerical simulations of granular flow, using a novel, portable software program for discrete element method (DEM) simulations.

Design/methodology/approach

Since particle methods provide a unifying framework for both discrete and continuous systems, the program is based on the parallel particle mesh (PPM) library, which has already been demonstrated to provide transparent parallelization and state‐of‐the‐art parallel efficiency using particle methods for continuous systems.

Findings

By adapting PPM to discrete systems, results are reported from three‐dimensional simulations of a sand avalanche down an inclined plane.

Originality/value

The paper demonstrates the parallel performance and scalability of the new simulation program using up to 122 million particles on 192 processors, employing adaptive domain decomposition and load balancing techniques.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 21000