Search results

1 – 10 of 177
Article
Publication date: 29 July 2014

Hong-Yan Liu, Ji-Huan He and Zheng-Biao Li

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable…

Abstract

Purpose

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable water or air permeation and remarkable thermal conductivity. The purpose of this paper is to reveal the phenomena by the fractional calculus.

Design/methodology/approach

This paper begins with the continuum assumption in conventional theories, and then the fractional Gauss’ divergence theorems are used to derive fractional differential equations in fractal media. Fractional derivatives are introduced heuristically by the variational iteration method, and fractal derivatives are explained geometrically. Some effective analytical approaches to fractional differential equations, e.g. the variational iteration method, the homotopy perturbation method and the fractional complex transform, are outlined and the main solution processes are given.

Findings

Heat conduction in silk cocoon and ground water flow are modeled by the local fractional calculus, the solutions can explain well experimental observations.

Originality/value

Particular attention is paid throughout the paper to giving an intuitive grasp for fractional calculus. Most cited references are within last five years, catching the most frontier of the research. Some ideas on this review paper are first appeared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 April 2023

Suheil Khuri and Reem Assadi

The purpose of this paper is to find approximate solutions for a general class of fractional order boundary value problems that arise in engineering applications.

Abstract

Purpose

The purpose of this paper is to find approximate solutions for a general class of fractional order boundary value problems that arise in engineering applications.

Design/methodology/approach

A newly developed semi-analytical scheme will be applied to find approximate solutions for fractional order boundary value problems. The technique is regarded as an extension of the well-established variation iteration method, which was originally proposed for initial value problems, to cover a class of boundary value problems.

Findings

It has been demonstrated that the method yields approximations that are extremely accurate and have uniform distributions of error throughout their domain. The numerical examples confirm the method’s validity and relatively fast convergence.

Originality/value

The generalized variational iteration method that is presented in this study is a novel strategy that can handle fractional boundary value problem more effectively than the classical variational iteration method, which was designed for initial value problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2020

KangLe Wang

The purpose of this paper is to describe the Lane–Emden equation by the fractal derivative and establish its variational principle by using the semi-inverse method. The variational

Abstract

Purpose

The purpose of this paper is to describe the Lane–Emden equation by the fractal derivative and establish its variational principle by using the semi-inverse method. The variational principle is helpful to research the structure of the solution. The approximate analytical solution of the fractal Lane–Emden equation is obtained by the variational iteration method. The example illustrates that the suggested scheme is efficient and accurate for fractal models.

Design/methodology/approach

The author establishes the variational principle for fractal Lane–Emden equation, and its approximate analytical solution is obtained by the variational iteration method.

Findings

The variational iteration method is very fascinating in solving fractal differential equation.

Originality/value

The author first proposes the variational iteration method for solving fractal differential equation. The example shows the efficiency and accuracy of the proposed method. The variational iteration method is valid for other nonlinear fractal models as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Mustafa Turkyilmazoglu

In an earlier paper (Turkyilmazoglu, 2011a), the author introduced a new optimal variational iteration method. The idea was to insert a parameter into the classical variational

Abstract

Purpose

In an earlier paper (Turkyilmazoglu, 2011a), the author introduced a new optimal variational iteration method. The idea was to insert a parameter into the classical variational iteration formula in an aim to prevent divergence or to accelerate the slow convergence property of the classical approach. The purpose of this paper is to approve the superiority of the proposed method over the traditional one on several physical problems treated before by the classical variational iteration method.

Design/methodology/approach

A sufficient condition theorem with an upper bound for the error is also presented to further justify the convergence of the new variational iteration method.

Findings

The optimal variational iteration method is found to be useful for heat and fluid flow problems.

Originality/value

The optimal variational iteration method is shown to be convergent under sufficient conditions. A novel approach to obtain the optimal convergence parameter is introduced.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

Bo Tang, Xuemin Wang, Leilei Wei and Xindong Zhang

This paper aims to apply fractional variational iteration method using He's polynomials (FVIMHP) to obtain exact solutions for variable-coefficient fractional heat-like and…

Abstract

Purpose

This paper aims to apply fractional variational iteration method using He's polynomials (FVIMHP) to obtain exact solutions for variable-coefficient fractional heat-like and wave-like equations with fractional order initial and boundary conditions.

Design/methodology/approach

The approach is based on FVIMHP. The authors choose as some examples to illustrate the validity and the advantages of the method.

Findings

The results reveal that the FVIMHP method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations.

Originality/value

The variable-coefficient fractional heat-like and wave-like equations with fractional order initial and boundary conditions are solved first. Illustrative examples are included to demonstrate the validity and applicability of the method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 May 2020

Reem Assadi, Suheil Khuri and Issam Louhichi

The purpose of this study is to implement a newly introduced numerical scheme for the numerical solution of a class of nonlinear fractional Bratu-type boundary value problems…

Abstract

Purpose

The purpose of this study is to implement a newly introduced numerical scheme for the numerical solution of a class of nonlinear fractional Bratu-type boundary value problems (BVPs).

Design/methodology/approach

This strategy is based on a generalization of the variational iteration method (VIM). This proposed generalized VIM (GVIM) is particularly suitable for tackling BVPs.

Findings

This scheme yields accurate solutions for a class of nonlinear fractional Bratu-type BVPs, for which the errors are uniformly distributed across a given domain. A proof of convergence is included. The numerical results confirm that this approach overcomes the deficiency of the VIM and other methods that exist in the literature in the sense that the solution does not deteriorate as the authors move away from the initial starting point.

Originality/value

The method introduced is based on original research that produces new knowledge. To the best of the authors’ knowledge, this is the first time that this GVIM is applied to fractional BVPs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Ji-Huan He

A three-dimensional (3D) unsteady potential flow might admit a variational principle. The purpose of this paper is to adopt a semi-inverse method to search for the variational

Abstract

Purpose

A three-dimensional (3D) unsteady potential flow might admit a variational principle. The purpose of this paper is to adopt a semi-inverse method to search for the variational formulation from the governing equations.

Design/methodology/approach

A suitable trial functional with a possible unknown function is constructed, and the identification of the unknown function is given in detail. The Lagrange multiplier method is used to establish a generalized variational principle, but in vain.

Findings

Some new variational principles are obtained, and the semi-inverse method can easily overcome the Lagrange crisis.

Practical implications

The semi-inverse method sheds a promising light on variational theory, and it can replace the Lagrange multiplier method for the establishment of a generalized variational principle. It can be used for the establishment of a variational principle for fractal and fractional calculus.

Originality/value

This paper establishes some new variational principles for the 3D unsteady flow and suggests an effective method to eliminate the Lagrange crisis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Buhe Eerdun, Qiqige Eerdun, Bala Huhe, Chaolu Temuer and Jing-Yu Wang

The purpose of this paper is to consider a steady two-dimensional magneto-hydrodynamic (MHD) Falkner-Skan boundary layer flow of an incompressible viscous electrically fluid over…

Abstract

Purpose

The purpose of this paper is to consider a steady two-dimensional magneto-hydrodynamic (MHD) Falkner-Skan boundary layer flow of an incompressible viscous electrically fluid over a permeable wall in the presence of a magnetic field.

Design/methodology/approach

The governing equations of MHD Falkner-Skan flow are transformed into an initial values problem of an ordinary differential equation using the Lie symmetry method which are then solved by He's variational iteration method with He's polynomials.

Findings

The approximate solution is compared with the known solution using the diagonal Pad’e approximants and the geometrical behavior for the values of various parameters. The results reveal the reliability and validity of the present work, and this combinational method can be applied to other nonlinear boundary layer flow problems.

Originality/value

In this paper, an approximate analytical solution of the MHD Falkner-Skan flow problem is obtained by combining the Lie symmetry method with the variational iteration method and He's polynomials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2020

Ji-Huan He and Habibolla Latifizadeh

The purpose of this paper is to suggest a general numerical algorithm for nonlinear problems by the variational iteration method (VIM).

Abstract

Purpose

The purpose of this paper is to suggest a general numerical algorithm for nonlinear problems by the variational iteration method (VIM).

Design/methodology/approach

Firstly, the Laplace transform technique is used to reconstruct the variational iteration algorithm-II. Secondly, its convergence is strictly proved. Thirdly, the numerical steps for the algorithm is given. Finally, some examples are given to show the solution process and the effectiveness of the method.

Findings

No variational theory is needed to construct the numerical algorithm, and the incorporation of the Laplace method into the VIM makes the solution process much simpler.

Originality/value

A universal iteration formulation is suggested for nonlinear problems. The VIM cleans up the numerical road to differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2021

Muhammad Nadeem, Ji-Huan He and Asad Islam

This study aims that very lately, Mohand transform is introduced to solve the ordinary and partial differential equations (PDEs). In this paper, the authors modify this…

Abstract

Purpose

This study aims that very lately, Mohand transform is introduced to solve the ordinary and partial differential equations (PDEs). In this paper, the authors modify this transformation and associate it with a further analytical method called homotopy perturbation method (HPM) for the fractional view of Newell–Whitehead–Segel equation (NWSE). As Mohand transform is restricted to linear obstacles only, as a consequence, HPM is used to crack the nonlinear terms arising in the illustrated problems. The fractional derivatives are taken into the Caputo sense.

Design/methodology/approach

The specific objective of this study is to examine the problem which performs an efficient role in the form of stripe orders of two dimensional systems. The authors achieve the multiple behaviors and properties of fractional NWSE with different positive integers.

Findings

The main finding of this paper is to analyze the fractional view of NWSE. The obtain results perform very good in agreement with exact solution. The authors show that this strategy is absolutely very easy and smooth and have no assumption for the constriction of this approach.

Research limitations/implications

This paper invokes these two main inspirations: first, Mohand transform is associated with HPM, secondly, fractional view of NWSE with different positive integers.

Practical implications

In this paper, the graph of approximate solution has the excellent promise with the graphs of exact solutions.

Social implications

This paper presents valuable technique for handling the fractional PDEs without involving any restrictions or hypothesis.

Originality/value

The authors discuss the fractional view of NWSE by a Mohand transform. The work of the present paper is original and advanced. Significantly, to the best of the authors’ knowledge, no such work has yet been published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 177