Search results

1 – 10 of 64
Article
Publication date: 3 May 2013

Leilei Wei, Xindong Zhang and Yinnian He

The purpose of this paper is to develop a fully discrete local discontinuous Galerkin (LDG) finite element method for solving a time‐fractional advection‐diffusion equation.

Abstract

Purpose

The purpose of this paper is to develop a fully discrete local discontinuous Galerkin (LDG) finite element method for solving a time‐fractional advection‐diffusion equation.

Design/methodology/approach

The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space.

Findings

By choosing the numerical fluxes carefully the authors' scheme is proved to be unconditionally stable and gets L2 error estimates of O(hk+1+(Δt)2+(Δt)α/2hk+(1/2)). Finally Numerical examples are performed to illustrate the effectiveness and the accuracy of the method.

Originality/value

The proposed method is different from the traditional LDG method, which discretes an equation in spatial direction and couples an ordinary differential equation (ODE) solver, such as Runger‐Kutta method. This fully discrete scheme is based on a finite difference method in time and local discontinuous Galerkin methods in space. Numerical examples prove that the authors' method is very effective. The present paper is the authors' first step towards an effective approach based on the discontinuous Galerkin method for the solution of fractional‐order problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2019

Swati Yadav, Rajesh K. Pandey, Anil K. Shukla and Kamlesh Kumar

This paper aims to present a high-order scheme to approximate generalized derivative of Caputo type for μ ∈ (0,1). The scheme is used to find the numerical solution of generalized…

Abstract

Purpose

This paper aims to present a high-order scheme to approximate generalized derivative of Caputo type for μ ∈ (0,1). The scheme is used to find the numerical solution of generalized fractional advection-diffusion equation define in terms of the generalized derivative.

Design/methodology/approach

The Taylor expansion and the finite difference method are used for achieving the high order of convergence which is numerically demonstrated. The stability of the scheme is proved with the help of Von Neumann analysis.

Findings

Generalization of fractional derivatives using scale function and weight function is useful in modeling of many complex phenomena occurring in particle transportation. The numerical scheme provided in this paper enlarges the possibility of solving such problems.

Originality/value

The Taylor expansion has not been used before for the approximation of generalized derivative. The order of convergence obtained in solving generalized fractional advection-diffusion equation using the proposed scheme is higher than that of the schemes introduced earlier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2018

Omar Abu Arqub

The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary…

416

Abstract

Purpose

The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit.

Design/methodology/approach

The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions.

Findings

Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models.

Research limitations/implications

Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers.

Practical implications

The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability.

Social implications

Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest.

Originality/value

This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.

Article
Publication date: 23 August 2021

Hamid Mesgarani, Mahya Kermani and Mostafa Abbaszadeh

The purpose of this study is to use the method of lines to solve the two-dimensional nonlinear advection–diffusion–reaction equation with variable coefficients.

Abstract

Purpose

The purpose of this study is to use the method of lines to solve the two-dimensional nonlinear advection–diffusion–reaction equation with variable coefficients.

Design/methodology/approach

The strictly positive definite radial basis functions collocation method together with the decomposition of the interpolation matrix is used to turn the problem into a system of nonlinear first-order differential equations. Then a numerical solution of this system is computed by changing in the classical fourth-order Runge–Kutta method as well.

Findings

Several test problems are provided to confirm the validity and efficiently of the proposed method.

Originality/value

For the first time, some famous examples are solved by using the proposed high-order technique.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2020

Sapna Pandit and R.C. Mittal

This paper aims to propose a novel approach based on uniform scale-3 Haar wavelets for unsteady state space fractional advection-dispersion partial differential equation which…

Abstract

Purpose

This paper aims to propose a novel approach based on uniform scale-3 Haar wavelets for unsteady state space fractional advection-dispersion partial differential equation which arises in complex network, fluid dynamics in porous media, biology, chemistry and biochemistry, electrode – electrolyte polarization, finance, system control, etc.

Design/methodology/approach

Scale-3 Haar wavelets are used to approximate the space and time variables. Scale-3 Haar wavelets converts the problems into linear system. After that Gauss elimination is used to find the wavelet coefficients.

Findings

A novel algorithm based on Haar wavelet for two-dimensional fractional partial differential equations is established. Error estimation has been derived by use of property of compactly supported orthonormality. The correctness and effectiveness of the theoretical arguments by numerical tests are confirmed.

Originality/value

Scale-3 Haar wavelets are used first time for these types of problems. Second, error analysis in new work in this direction.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 August 2019

Jufeng Wang and Fengxin Sun

This paper aims to present an interpolating element-free Galerkin (IEFG) method for the numerical study of the time-fractional diffusion equation, and then discuss the stability…

Abstract

Purpose

This paper aims to present an interpolating element-free Galerkin (IEFG) method for the numerical study of the time-fractional diffusion equation, and then discuss the stability and convergence of the numerical solutions.

Design/methodology/approach

In the time-fractional diffusion equation, the time fractional derivatives are approximated by L1 method, and the shape functions are constructed by the interpolating moving least-squares (IMLS) method. The final system equations are obtained by using the Galerkin weak form. Because the shape functions have the interpolating property, the unknowns can be solved by the iterative method after imposing the essential boundary condition directly.

Findings

Both theoretical and numerical results show that the IEFG method for the time-fractional diffusion equation has high accuracy. The stability of the fully discrete scheme of the method on the time step is stable unconditionally with a high convergence rate.

Originality/value

This work will provide an interpolating meshless method to study the numerical solutions of the time-fractional diffusion equation using the IEFG method.

Article
Publication date: 29 July 2014

Hong-Yan Liu, Ji-Huan He and Zheng-Biao Li

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable…

Abstract

Purpose

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable water or air permeation and remarkable thermal conductivity. The purpose of this paper is to reveal the phenomena by the fractional calculus.

Design/methodology/approach

This paper begins with the continuum assumption in conventional theories, and then the fractional Gauss’ divergence theorems are used to derive fractional differential equations in fractal media. Fractional derivatives are introduced heuristically by the variational iteration method, and fractal derivatives are explained geometrically. Some effective analytical approaches to fractional differential equations, e.g. the variational iteration method, the homotopy perturbation method and the fractional complex transform, are outlined and the main solution processes are given.

Findings

Heat conduction in silk cocoon and ground water flow are modeled by the local fractional calculus, the solutions can explain well experimental observations.

Originality/value

Particular attention is paid throughout the paper to giving an intuitive grasp for fractional calculus. Most cited references are within last five years, catching the most frontier of the research. Some ideas on this review paper are first appeared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 January 2020

Ramesh Chand Mittal, Sudhir Kumar and Ram Jiwari

The purpose of this study is to extend the cubic B-spline quasi-interpolation (CBSQI) method via Kronecker product for solving 2D unsteady advection-diffusion equation. The CBSQI…

Abstract

Purpose

The purpose of this study is to extend the cubic B-spline quasi-interpolation (CBSQI) method via Kronecker product for solving 2D unsteady advection-diffusion equation. The CBSQI method has been used for solving 1D problems in literature so far. This study seeks to use the idea of a Kronecker product to extend the method for 2D problems.

Design/methodology/approach

In this work, a CBSQI is used to approximate the spatial partial derivatives of the dependent variable. The idea of the Kronecker product is used to extend the method for 2D problems. This produces the system of ordinary differential equations (ODE) with initial conditions. The obtained system of ODE is solved by strong stability preserving the Runge–Kutta method (SSP-RK-43).

Findings

It is found that solutions obtained by the proposed method are in good agreement with the analytical solution. Further, the results are also compared with available numerical results in the literature, and a reasonable degree of compliance is observed.

Originality/value

To the best of the authors’ knowledge, the CBSQI method is used for the first time for solving 2D problems and can be extended for higher-dimensional problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 September 2020

Yu Bai, Lamei Huo and Yan Zhang

The purpose of this study is to investigate the unsteady stagnation-point flow and heat transfer of fractional Maxwell fluid towards a time power-law-dependent stretching plate…

Abstract

Purpose

The purpose of this study is to investigate the unsteady stagnation-point flow and heat transfer of fractional Maxwell fluid towards a time power-law-dependent stretching plate. Based on the characteristics of pressure in the boundary layer, the momentum equation with the fractional Maxwell model is firstly formulated to analyze unsteady stagnation-point flow. Furthermore, generalized Fourier’s law is considered in the energy equation and boundary condition of convective heat transfer.

Design/methodology/approach

The nonlinear fractional differential equations are solved by the newly developed finite difference scheme combined with L1-algorithm, whose convergence is verified by constructing a numerical example.

Findings

Some interesting results can be revealed. The larger fractional derivative parameter of velocity promotes the flow, while the smaller fractional derivative parameter of temperature accelerates the heat transfer. The temperature boundary layer is thicker than the velocity boundary layer, and the velocity enlarges as the stagnation parameter raises. This is because when Prandtl number < 1, the capacity of heat diffusion is greater than that of momentum diffusion. It is to be observed that all the temperature profiles first enhance a little and then reduce rapidly, which indicates the thermal retardation of Maxwell fluid.

Originality/value

The unsteady stagnation-point flow model of Maxwell fluid is extended from integral derivative to fractional derivative, which has more flexibility to describe viscoelastic fluid’s complex dynamic process and provide a theoretical basis for industrial processing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 64