Search results

1 – 10 of 139
Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Omar Malla and Madhavan Shanmugavel

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when…

Abstract

Purpose

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when the manipulator changes its position. They are implemented in many palletizing robots connected with binary, ternary and quaternary links through both active and passive joints. This limits the motion of some joints and hence results in relative and negative joint angles when assigning coordinate axes. This study aims to provide a simplified accurate model for manipulators built with parllelogram linkages to ease the kinematics calculations.

Design/methodology/approach

This study introduces a simplified model, replacing each parallelogram linkage with a single (binary) link with an active and a passive joint at the ends. This replacement facilitates countering motion while preserving subsequent link orientations. Validation of kinematics is performed on palletizing manipulators from five different OEMs. The validation of Dobot Magician and ABB IRB1410 was carried out in real time and in their control software. Other robots from ABB, Yaskawa, Kuka and Fanuc were validated using control environments and simulators.

Findings

The proposed model enables the straightforward derivation of forward kinematics and transforms hybrid robots into equivalent serial-link robots. The model demonstrates high accuracy streamlining the derivation of kinematics.

Originality/value

The proposed model facilitates the use of classical methods like the Denavit–Hartenberg procedure with ease. It not only simplifies kinematics derivation but it also helps in robot control and motion planning within the workspace. The approach can also be implemented to simplify the parallelogram linkages of robots with higher degrees of freedom such as the IRB1410.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 May 2024

Swathi Pennapareddy, Ramprasad Srinivasan and Natarajan K.

Automatic dependent surveillance-broadcast (ADS-B) is the foundational technology of the next generation air transportation system defined by Federal Aviation Authority and is one…

Abstract

Purpose

Automatic dependent surveillance-broadcast (ADS-B) is the foundational technology of the next generation air transportation system defined by Federal Aviation Authority and is one of the most precise ways for tracking aircraft position. ADS-B is intended to provide greater situational awareness to the pilots by displaying the traffic information like aircraft ID, altitude, speed and other critical parameters on the Cockpit Display of Traffic Information displays in the cockpit. Unfortunately, due to the initial proposed nature of ADS-B protocol, it is neither encrypted nor has any other innate security mechanisms, which makes it an easy target for malicious attacks. The system is vulnerable to various active and passive attacks like message ingestion, message deletion, eavesdropping, jamming, etc., which has become an area of concern for the aviation industry. The purpose of this study is to propose a method based on modified advanced encryption standard (AES) algorithm to secure the ADS=B messages and increase the integrity of ADS-B data transmissions.

Design/methodology/approach

Though there are various cryptographic and non-cryptographic methods proposed to secure ADS-B data transmissions, it is evident that most of these systems have limitations in terms of cost, implementation or feasibility. The new proposed method implements AES encryption techniques on the ADS-B data on the sender side and correlated decryption mechanism at the receiver end. The system is designed based on the flight schedule data available from any flight planning systems and implementing the AES algorithm on the ADS-B data from each aircraft in the flight schedule.

Findings

The suitable hardware was developed using Raspberry pi, ESP32 and Ra-02. Several runs were done to verify the original message, transmitted data and received data. During transmission, encryption algorithm was being developed, which has got very high secured transmission, and during the reception, the data was secured. Field test was conducted to validate the transmission and quality. Several trials were done to validate the transmission process. The authors have successfully shown that the ADS-B data can be encrypted using AES algorithm. The authors are successful in transmitting and receiving the ADS-B data packet using the discussed hardware and software methodology. One major advantage of using the proposed solution is that the information received is encrypted, and the receiver ADS-B system can decrypt the messages on the receiving end. This clearly proves that when the data is received by an unknown receiver, the messages cannot be decrypted, as the receiver is not capable of decrypting the AES-authenticated messages transmitted by the authenticated source. Also, AES encryption is highly unlikely to be decrypted if the encryption key and the associated decryption key are not known.

Research limitations/implications

Implementation of the developed solution in actual onboard avionics systems is not within the scope of this research. Hence, assessing in the real-time distances is not covered.

Social implications

The authors propose to extend this as a software solution to the onboard avionics systems by considering the required architectural changes. This solution can also bring in positive results for unmanned air vehicles in addition to the commercial aircrafts. Enhancement of security to the key operational and navigation data elements is going to be invaluable for future air traffic management and saving lives of people.

Originality/value

The proposed solution has been practically implemented by developing the hardware and software as part of this research. This has been clearly brought out in the paper. The implementation has been tested using the actual ADS-B data/messages received from using the ADS-B receiver. The solution works perfectly, and this brings immense value to the aircraft-to-aircraft and aircraft-to-ground communications, specifically while using ADS-B data for communicating the position information. With the proposed architecture and minor software updates to the onboard avionics, this solution can enhance safety of flights.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2024

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Dandan Wen, Jiake Li and Dandan Guo

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of…

Abstract

Purpose

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources.

Design/methodology/approach

The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model.

Findings

The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy.

Practical implications

This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users.

Social implications

The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans.

Originality/value

This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 20 September 2021

Kazhal Gharibi and Sohrab Abdollahzadeh

To maximize the network total profit by calculating the difference between costs and revenue (first objective function). To maximize the positive impact on the environment by…

Abstract

Purpose

To maximize the network total profit by calculating the difference between costs and revenue (first objective function). To maximize the positive impact on the environment by integrating GSCM factors in RL (second objective function). To calculate the efficiency of disassembly centers by SDEA method, which are selected as suppliers and maximize the total efficiency (third objective function). To evaluate the resources and total efficiency of the proposed model to facilitate the allocation resource process, to increase resource efficiency and to improve the efficiency of disassembly centers by Inverse DEA.

Design/methodology/approach

The design of a closed-loop logistics network for after-sales service for mobile phones and digital cameras has been developed by the mixed-integer linear programming method (MILP). Development of MILP method has been performed by simultaneously considering three main objectives including: total network profit, green supply chain factors (environmental sustainability) and maximizing the efficiency of disassembly centers. The proposed model of study is a six-level, multi-objective, single-period and multi-product that focuses on electrical waste. The efficiency of product return centers is calculated by SDEA method and the most efficient centers are selected.

Findings

The results of using the model in a case mining showed that, due to the use of green factors in network design, environmental pollution and undesirable disposal of some electronic waste were reduced. Also, with the reduction of waste disposal, valuable materials entered the market cycle and the network profit increased.

Originality/value

(1) Design a closed-loop reverse logistics network for after-sales services; (2) Introduce a multi-objective multi-echelon mixed integer linear programming model; (3) Sensitivity analysis use Inverse-DEA method to increase the efficiency of inefficient units; (4) Use the GSC factors and DEA method in reverse logistics network.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 11 October 2021

Hadi Shabanpour, Saeed Yousefi and Reza Farzipoor Saen

The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical…

453

Abstract

Purpose

The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical and real-world CE framework to improve and fill the current knowledge gap in evaluating sustainability of SCs. Besides, we aim to propose a real-life managerial forecasting approach to alert the decision-makers on the future unsustainability of SCs.

Design/methodology/approach

It is needed to develop an integrated mathematical model to deal with the complexity of sustainability and CE criteria. To address this necessity, for the first time, network data envelopment analysis (NDEA) is incorporated into the dynamic data envelopment analysis (DEA) and artificial neural network (ANN). In general, methodologically, the paper uses a novel hybrid decision-making approach based on a combination of dynamic and network DEA and ANN models to evaluate sustainability of supply chains using environmental, social, and economic criteria based on real life data and experiences of knowledge-based companies so that the study has a good adaptation with the scope of the journal.

Findings

A practical CE evaluation framework is proposed by incorporating recyclable undesirable outputs into the models and developing a new hybrid “dynamic NDEA” and “ANN” model. Using ANN, the sustainability trend of supply chains for future periods is forecasted, and the benchmarks are proposed. We deal with the undesirable recycling outputs, inputs, desirable outputs and carry-overs simultaneously.

Originality/value

We propose a novel hybrid dynamic NDEA and ANN approach for forecasting the sustainability of SCs. To do so, for the first time, we incorporate a practical CE concept into the NDEA. Applying the hybrid framework provides us a new ranking approach based on the sustainability trend of SCs, so that we can forecast unsustainable supply chains and recommend preventive solutions (benchmarks) to avoid future losses. A practicable case study is given to demonstrate the real-life applications of the proposed method.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 8 August 2023

Said Al Riyami, Mohammad Rezaur Razzak and Adil S. Al-Busaidi

Sweeping changes are underway in the world of work where new work-models such as permanent work-from home mandates are being implemented by many organizations in the aftermath of…

Abstract

Purpose

Sweeping changes are underway in the world of work where new work-models such as permanent work-from home mandates are being implemented by many organizations in the aftermath of the COVID-19 pandemic. Although cost benefits for organizations are obvious from such measures, little is known about how emotions of employees are affected by such measures. A recent industry survey reveals that some employees feel that they are being ostracized from their normal workplace while others are being allowed to return to their normal office settings. However, there appears to be dearth of empirical studies on how employees are coping with workplace ostracism (WO), and whether such emotions are related to factors such as their levels of mindfulness and perceived organizational support (POS). Therefore, this study deploys the stress and coping theory to suggest that individuals with high levels of mindfulness are less likely to experience WO, and that such a relationship is further moderated by POS.

Design/methodology/approach

The hypotheses developed in this study are tested through survey data collected from 240 employees who work for various large organizations in Oman. Eligible respondents are employees who have been directed by their employers to continue to work from home even after a large portion of their colleagues have returned to their physical offices.

Findings

The data is analyzed with R Core Team software. The findings reveal that employees with high levels of mindfulness reported lower levels of WO. Furthermore, POS moderates the inverse relationship between mindfulness and WO at moderate and high levels of POS but not when organizational support is perceived to be at low levels.

Research limitations/implications

This study suffers from several limitations. First, the study is cross-sectional in nature and does not capture how the perceptions of workplace ostracism change over time. Considering that majority of the new directives to employees to permanently work from their remote locations are quite recent. Second, this study posits the effect of mindfulness as a trait on WO and does not consider other constructs. Third, the demographic details of the respondents indicates that bulk of the employees that were asked by their employers to continue to work from home even after the COVID-19 restrictions were lifted were women (68%).

Practical implications

Practically, the relationships between mindfulness, perceived organizational support and workplace ostracism provide useful managerial knowledge. This is particularly important considering the fact that the influence on employee perceptions due to these new work models are yet to be fully realized. As a result, managers can fine-tune their organizational communication and their training programs toward developing awareness of the present among employees to enable them to appraise new organizational policies from a more holistic long-term perspective. Additionally, the management can also emphasize sufficient material and psychological support for employees that are required to remain working from home.

Originality/value

This study appears to be among the first empirical research that provides evidence on the inverse relationship between mindfulness and WO, especially in the context of the new work-models in the post pandemic period. Additionally, the study demonstrates that moderate to high levels of POS can further mitigate WO among individuals with higher levels of mindfulness.

Details

Evidence-based HRM: a Global Forum for Empirical Scholarship, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-3983

Keywords

Article
Publication date: 23 May 2023

Minggong Zhang, Xiaolong Xue, Ting Luo, Mengmeng Li and Xiaoling Tang

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a…

Abstract

Purpose

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a complexity perspective and develop an evaluation model using qualitative and quantitative methods. Case studies are carried out to verify the reliability of the evaluation model, thereby providing theoretical and practical guidance for CRMIP operations and maintenance (O&M).

Design/methodology/approach

Guided by the idea of complexity management, the evaluation indicators of CRMIP supportability are determined through literature analysis, actual O&M experience and expert interviews. A combination of qualitative and quantitative methods, consisting of sequential relationship analysis, entropy weighting, game theory and cloud model, is developed to determine the indicator weights. Finally, the evaluation model is used to evaluate the supportability of the Hong Kong–Zhuhai–Macao Bridge (HZMB), which tests the rationality of the model and reveals its supportability level.

Findings

The results demonstrate that CRMIPs' supportability is influenced by 6 guideline-level and 18 indicator-level indicators, and the priority of the influencing factors includes “organization,” “technology,” “system,” “human resources,” “material system,” and “funding.” As for specific indicators, “organizational objectives,” “organizational structure and synergy mechanism,” and “technical systems and procedures” are critical to CRMIPs' O&M supportability. The results also indicate that the supportability level of the HZMB falls between good and excellent.

Originality/value

Under the guidance of complexity management thinking, this study proposes a supportability evaluation framework based on the combined weights of game theory and the cloud model. This study provides a valuable reference and scientific judgment for the health and safety of CRMIPs' O&M.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 January 2024

Wujun Tang, Jiwon Chung and Sumin Koo

This study aims to conduct text mining and semantic network analysis of muscle-supportive and posture-corrective wearable robots for the elderly to understand key terms related to…

57

Abstract

Purpose

This study aims to conduct text mining and semantic network analysis of muscle-supportive and posture-corrective wearable robots for the elderly to understand key terms related to the topic and to identify considerations for developing these types of clothing.

Design/methodology/approach

The authors searched and identified the key terms wearable robot, muscle-supportive, posture correction and elderly using the text-mining software Textom to extract terms as well as the network analysis software UCINET 6 to process and visualize the relationships among the terms. The authors compared and analyzed the term frequency (TF), the TF-inverse document frequency and the degree centrality of the terms, and the authors visualized and summarized the terms using NetDraw.

Findings

The key terms and their relationships in 3–4 groups were identified: wearable robot, muscle-supportive, posture correction and elderly. The authors identified the aspects of designing muscle-supportive and posture-corrective wearable robots for the elderly.

Originality/value

This study contributes to the field of muscle-supportive clothing and wearable robotics by deriving insights into what people are discussing and interested in, and by offering recommendations when developing these types of clothing for the elderly.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 139