Search results

1 – 10 of 17
Article
Publication date: 15 March 2023

Omar D. Mohammed

This paper aims to present an analytical approach for the determination of helical gear tooth geometry and introduces the necessary parameters. Tooth geometry including tooth…

Abstract

Purpose

This paper aims to present an analytical approach for the determination of helical gear tooth geometry and introduces the necessary parameters. Tooth geometry including tooth chamfer, involute curve, root fillet, helix as well as tooth microgeometry can be obtained using the presented approach.

Design/methodology/approach

The presented analytical approach involves deriving the equivalent equations at the transverse plane rather than the normal plane. Moreover, numerical evaluation of microgeometry modifications is presented for tooth profile, tooth lead and flank twist.

Findings

An analytical approach is presented and equations are derived and explained in detail for helical gear tooth geometry calculation, including tooth microgeometry. Method 1, which was presented by Lopez and Wheway (1986) for obtaining the root fillet, is examined and it is proven that it does not work accurately for helical gears, but rather it works perfectly in the case of spur gears. Changing the normal plane parameters in Method 1 to the transverse plane ones does not give correct results. Two alternative methods, namely, Methods 2 and 3, are developed in the current research for the calculation of the tooth root fillet of helical gears. The presented methods and also the numerical evaluation presented for microgeometry modification are examined against the geometry obtained from Windows LDP software. The results show very good agreement, and it is feasible to apply the approach using the presented equations.

Originality/value

In the gear design process, it is important to model the correct gear tooth geometry and deliver all related dimensions and calculations accurately. However, the determination of helical gear tooth geometry has not been presented adequately by equations to facilitate gear modelling. The detailed helical gear tooth root has been enveloped using software tools that can simulate the cutter motion. Deriving those equations, presented in this article, provides gear design engineers and researchers with the possibility to model helical gears and perform design calculations in a structured, applicable and accurate method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 August 2024

Muhammad Zaim Hanif Nazarudin, Mohamad Aizat Abas, Wan Maryam Wan Ahmad Kamil, Faiz Farhan Ahmad Nadzri, Saifulmajdy A. Zahiri, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani and Mohd Hafiz Zawawi

This paper aims to investigate the effect of different beam distance by understanding laser beam influence on solder joint quality. The utilisation numerical-based simulations and…

Abstract

Purpose

This paper aims to investigate the effect of different beam distance by understanding laser beam influence on solder joint quality. The utilisation numerical-based simulations and experimental validation will help to minimise the formation of micro void in PTH that can lead to cracks and defects on passive devices.

Design/methodology/approach

The research uses a combination approach of numerical-based simulation using Finite Volume Method (FVM) and experimental validation to explore the impact of different laser beam distances on solder joint quality in PTH assemblies. The study visualises solder flow and identifies the optimal beam distance for placing a soldering workpiece and a suitable tolerance distance for inserting the solder wire.

Findings

The simulation results show the formation of micro void that occurs in PTH region with low volume fraction and unbalance heat concentration profile observed. The experimental results indicate that the focus point of the laser beam at a 99.0 mm distance yields the smallest beam size. Simulation visualisation demonstrates that the laser beam’s converging area at +4.6 mm from the focus point which provides optimal tolerance distances for placing the solder wire. The high-power laser diode exhibits maximum tolerance distance at 103.6 mm from the focus point where suitable beam distance for positioning of the soldering workpiece with 50% laser power. The simulation results align with the IPC-A-610 standard, ensuring optimal filling height, fillet shape with a 90° contact angle and defect-free.

Practical implications

This research provides implications for the industry by demonstrating the capability of the simulation approach to produce high-quality solder joints. The parameters, such as beam distance and power levels, offer practical guidelines for improving laser soldering processes in the manufacturing industry.

Originality/value

This study contributes to the field by combining high-power laser diode technology with numerical-based simulations to optimise the beam distance parameters for minimising micro void formation in the PTH region.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 September 2024

S. Vignesh and A. Johnney Mertens

The research paper comprehensively investigates the gear tooth deflection of standard thermoplastic gears with steel gear as the driver and driven companions. An accurate mapping…

Abstract

Purpose

The research paper comprehensively investigates the gear tooth deflection of standard thermoplastic gears with steel gear as the driver and driven companions. An accurate mapping of characteristic contact regions between the meshing gears was done, and the behaviour of the gear tooth in the premature and prolonged contact zones was studied.

Design/methodology/approach

The study employs the finite element method to conduct a quasi-static 2D analysis of meshing gear teeth. The finite element model was created in AutoCAD and analysed using the ANSYS 19.1 simulation package.

Findings

In the polymer-polymer gear combinations, premature and prolonged contact primarily occurs along the addendum radii of meshing gears, whereas a novel contact phenomenon was observed in the coast side for polymer-metal and metal-polymer combinations, exhibiting a path perpendicular to the standard drive side contact. As well, the deflection of the tooth alters the load distribution across the interlocking gears, leading to a decrement in the root stresses.

Originality/value

The Lewis bending equation demonstrates that bending stresses depend solely on the applied load and the geometry of the tooth. It does not consider the effects of deflection. However, the computational results showed that the gear tooth deflection caused by different gear pair combinations also affects the bending stresses. The contact stresses observed in the polymer-polymer gear combination were observed to be within the material’s proportional limit. However, when a steel gear is paired with a polymer gear, the contact stresses exceed the proportional limit due to coast side contact.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 September 2024

Bruno Benegra Denadai, José Aguiomar Foggiatto, Peterson Triches Dornbusch, Maria Fernanda Pioli Torres and Marco Antônio Luersen

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and…

Abstract

Purpose

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and affordable manufacturing alternative while ensuring the horse's safety, comfort and functionality.

Design/methodology/approach

The ground reaction force and the frequency of a horse’s walking were obtained from the literature. Mechanical tests were conducted on specimens with different manufacturing directions to determine the mechanical properties of the printed material. Finite element simulations, along with fatigue equations were used to design a geometry that respected the stress constraints. Subsequently, a prototype was manufactured in thermoplastic polyurethane using additive manufacturing technique.

Findings

With the aid of the proposed methodology, a new low-cost equine hand prosthesis is developed, and a prototype is manufactured. And in accordance with the design requirements, this prosthesis is intended to exhibit proper durability.

Social implications

This work presents an alternative way for horses facing amputation, offering a solution where euthanasia can be avoided through the use of a prosthesis to replace a part of the amputated limb. This approach could not only extend the reproductive life of matrices with high commercial value but also preserve the lives of animals with sentimental value to the owner.

Originality/value

To the best of the authors' knowledge, this is the first study of an equine hand prosthesis model designed for and manufactured by additive manufacturing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 September 2024

Aaron Ecel, Godwin Mwesigye Ahimbisibwe, Dennis Nuwagaba, Mariah Nakintu Nankya and Shareen Nahurira

Preferential market access is a pillar of the enabling clause in international trade, and as such has received scholarly attention in the recent past. This study aims to…

Abstract

Purpose

Preferential market access is a pillar of the enabling clause in international trade, and as such has received scholarly attention in the recent past. This study aims to empirically examine intensity and utilisation of Uganda’s preferential market access.

Design/methodology/approach

Secondary data at the six-digit level of the harmonised system was sourced from the International Trade Centre’s and UN COMTRADE’s Trade Map database on trade flows to compute; trade intensity indices, Balsa’s revealed comparative advantage (RCA) indices and the existing potential trade. The time period was 2013–2022.

Findings

It is evident that Uganda is not taking full advantage of its preferential market access. The findings of the trade intensity analysis revealed that the strength of trade relations between Uganda and its preferential markets has been consistently weak in the period 2013–2022, while the intensity of trade relations with its FTA partners has been strong. The RCA results revealed that all Uganda’s agricultural exports to its preferential markets have a comparative advantage, with exports of roses reporting an exceptionally high RCA relative to other agricultural exports. The RCA results also show that the comparative advantage of Uganda’s coffee exports recovered after a significant fall in the period 2014–2022. The analysis of the existing potential for trade reveals a disproportionally low market share held by Uganda across all product lines, notably, only 2.3% of the US$29bn coffee imports in its preferential markets.

Research limitations/implications

One limitation of this study is that it primarily relied on quantitative data from the International Trade Centre and thus lacks an exhaustive understanding of the circumstances at the export firm level. Qualitative data, such as interviews with exporters and policymakers, could provide deeper insights into the specific challenges and opportunities faced by Ugandan businesses in these markets.

Practical implications

This paper highlights the need for additional trade facilitation measures to address preferential market access bottlenecks such as stringent rules of origin and call for an aggressive government intervention in enhancing the export readiness of SMEs in Uganda. In addition, the paper is informative to Uganda’s exporters regarding the existing and potential increase in their exports to international markets.

Originality/value

The strength of Uganda’s trade relations with its preferential markets is empirically examined in this paper and provides useful insights for enhancing utilisation of preferential market access by beneficiary countries.

Details

Competitiveness Review: An International Business Journal , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1059-5422

Keywords

Article
Publication date: 21 May 2024

Kesavan Devarayan, Yazhiniyan Palanisamy, Gangeswar Mohan, Anand Theivasigamani, Sabariswaran Kandasamy, Vimaladevi Sekar, Evon Umesh Siluvai John, Monikandon Sukumaran, Ramar Marimuthu and Hema Anjappan

This study aims to develop a pH-functional thin-film sensor for non-invasive measurement of spoilage of packed fish.

Abstract

Purpose

This study aims to develop a pH-functional thin-film sensor for non-invasive measurement of spoilage of packed fish.

Design/methodology/approach

At first, polymers of natural origin such as hydroxy(propyl)methyl cellulose, potato dextrose agar and starch alongside a pH sensitive-mixed indicator formulation were used to produce thin film sensor. The developed thin film sensor was tested for monitoring the spoilage of seafood stored at 4°C. Using ultraviolet-visible and Fourier-transform infrared spectroscopy, the halochromic sensor was characterised. In addition, the halochromic response of the thin film was directly correlated to the total volatile base nitrogen emitted by the packaged fish, pH, microbial activity and sensory evaluation.

Findings

The results suggested the developed biopolymer-based thin film sensor showed different colours in line with the spoilage of the packed fish, which could be well correlated with the total volatile base nitrogen, microbial activity and sensory evaluation. In addition, the thin film sensors exhibited a high degree of biodegradability. The biopolymers-based thin film halochromic sensor has exhibited excellent biodegradability along with sensitiveness towards the spoilage of the packed fish.

Originality/value

In the future, consumers and retailers may prefer seafood containers equipped with such halochromic sensors to determine the degree of food deterioration as a direct indicator of food quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2022

Mounir Kouhila, Younes Bahammou, Hamza Lamsyehe, Zakaria Tagnamas, Haytem Moussaoui, Ali Idlimam and Abdelkader Lamharrar

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of…

Abstract

Purpose

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of temperature and humidity on the microstructure of earth mortar using static gravimetric method.

Design/methodology/approach

A convective solar dryer was used for the pretreatment of building and solid materials for construction.

Findings

The humidity influences the mortar sorption – surface water sorption of earth mortar increased with increasing temperature.

Originality/value

The study used a novel method for pretreatment building materials by using solar dryer.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 December 2023

Mélissa Fortin, Erica Pimentel and Emilio Boulianne

This study explores how introducing a permissioned blockchain in a supply chain context impacts accountability relationships and the process of rendering an account. The authors…

Abstract

Purpose

This study explores how introducing a permissioned blockchain in a supply chain context impacts accountability relationships and the process of rendering an account. The authors explore how implementing a digital transformation impacts the governance of network transactions.

Design/methodology/approach

The authors mobilize 28 interviews and documentary analysis. The authors focus on early blockchain adopters to get an insight into how implementing a permissioned blockchain can transform information sharing, coordination and collaboration between business partners, now converted into network participants.

Findings

The authors suggest that implementing a permissioned blockchain impacts accountability across three levers, namely through the ledger, through the code and through the people, where these levers are interconnected. Blockchains are often valued for their ability to enable transparency through the visibility of transactions, but the authors argue that this is an incomplete view. Rather, transparency alone does not help to satisfy a duty of accountability, as it can result in selective disclosure or obfuscation.

Originality/value

The authors extend the conceptualizations of accountability in the blockchain literature by focusing on how accountability relationships are enacted, and accounts are rendered in a permissioned blockchain context. Additionally, the authors complement existing work on accountability and governance by suggesting an integrated model across three dimensions: ledger, code and people.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

1 – 10 of 17