Search results

1 – 10 of over 1000
Article
Publication date: 19 August 2021

B. Norerama D. Pagukuman and M. Kamel Wan Ibrahim

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the…

Abstract

Purpose

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the better quality of dried food products.

Design/methodology/approach

From the reviewed works of literature, the external factors including the drying temperature, airflow rate and relative humidity have significant effects to increase the rate of moisture diffusivity of the freshly harvested products during the drying process. The proper controls of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C) can influence the dried product quality. The dehydration ratio is the procedure to measure the quality of the dried food product.

Findings

The indirect solar dryer including the mixed-mode, hybrid and integrated was found shorter in drying time and energy-intensive compared to sun drying and direct drying. The recommended drying temperature is from 35.5°C to 70°C with 1–2 m/s velocity and 20%–60% relative humidity. The optimum thermal efficiency can be reached by additional devices, including solar collectors and solar accumulators. It gives a simultaneous effect and elongated the drying temperature 8%–10% higher than ambient temperature with 34%–40% energy saving. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, an airflow rate at 0.035–0.04 kg/m2 is recommended for an optimum drying kinetic performance.

Research limitations/implications

This paper discusses the influence of the external factors of the solar dryer design on the thermal performance of the solar dryer and final dried food products quality. Therefore, the findings cannot serve as a statistical generalization but should instead be viewed as the quantitative validation subjected to fundamentals of the solar dryer design process and qualitative observation of the dried food product quality.

Practical implications

A well-designed of solar dryer with low operating and initial fabrication cost, which is simple to operate is useful for the farmers to preserve surplus harvested crops to an acceptable and marketable foods product. The optimization of the external and internal factors can contribute to solar dryer thermal performance that later provides an organoleptic drying condition that results in good quality of dried product and better drying process. The recommended drying temperature for a drying method is between 35°C up to 70°C. Drying at 65.56°C was effective to kill microorganisms. Meanwhile, drying at 50°C consider as average drying temperature. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, air flowrate at 0.035–0.04 kg/m2 is recommended for optimum drying kinetic performance. The recommended value of aspect ratio and mass flow rate is 200 to 300 for an optimum evaporation rate. The good quality of dried products and good performance of solar dryers can be developed by proper control of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C).

Social implications

The proper control of the drying temperature, relative humidity and airflow rate during the drying process will influence the final dried food products in terms of shape, color, aroma, texture, rupture and nutritious value. It is crucial to control the drying parameters because over-drying caused an increment of energy cost and reduces the dry matter. The quick-drying will disturb the chemical process during fermentation to be completed.

Originality/value

This study identifies the potential of the solar drying method for dehydrating agricultural produces for later use with the organoleptic drying process. The organoleptic drying process can reduce mold growth by promising an effective diffusion of moisture from freshly harvested products. The research paper gives useful understandings that well-designed solar drying technology gives a significant effect on dried product quality.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 June 2016

T.S. Sreerag and K.S. Jithish

This paper aims to present a comparative study of a solar dryer with and without multiple phase change materials (PCMs). It also involves designing and fabricating the…

Abstract

Purpose

This paper aims to present a comparative study of a solar dryer with and without multiple phase change materials (PCMs). It also involves designing and fabricating the experimental model of an indirect solar dryer which uses PCMs for thermal energy storage.

Design/methodology/approach

A corrugated aluminium sheet is used as an absorber plate. Aluminium pipes of 0.75 inch are welded under the corrugated sheet to store the PCM. Here, multiple PCMs are used – one with a high melting point and the other with a low melting point for the purpose of improving efficiency. A single air pass model in which air moves over the absorber plate is used for the study. Air is heated in an air heater section which also contains thermal energy storage. The energy obtained in the air heater section is first used to heat and melt the PCM.

Findings

Thus, heat energy is stored into the PCM and then the heated air moves into the drying chamber in which drying take place. When the sun’s insolation reduces, discharging from the PCM takes place. Thus, it reduces the fluctuation in the energy and provides continuous energy to the system. Glass wool is used as an insulation material. Different parameters for this air heater-dryer have been calculated.

Originality/value

The current study enhances the understanding of solar drying process and the developed model with and without multiple phase change materials can be used for optimising the drying process.

Details

World Journal of Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2022

Ataollah Khanlari, Faraz Afshari, Adnan Sözen, Azim Doğuş Tuncer and Barış Kusun

During the past several years, research and studies in the field of solar energy have been continuously increased. One of the substantial applications of solar energy is related…

Abstract

Purpose

During the past several years, research and studies in the field of solar energy have been continuously increased. One of the substantial applications of solar energy is related to industrial utilization for the drying process by efficient heat transfer methods. This study aims to upgrade the overall performance of an indirect solar dryer using a solar absorber extension tube (SET) equipped with ball-type turbulators.

Design/methodology/approach

In this work, three various SETs including hollow (SET Type 1), 6-balls (SET Type 2) and 10-balls (SET Type 3), have been simulated using Fluent software to evaluate heat transfer characteristics and flow structure along the air passage. Then, the modified solar drying system has been manufactured and tested at different configurations.

Findings

The findings indicated that adding a SET improved the performance notably. According to the results, using turbulators in the tube has a positive effect on heat transfer. The highest overall thermal efficiency was found in the range of 51.47%–64.71% for the system with SET Type 3. The maximum efficiency increment of the system was found as 19% with the use of SET. Also, the average specific moisture extraction rate, which is a significant factor to survey the effectiveness of the dehumidification system was found between 0.20 and 0.38 kg kWh−1.

Originality/value

In the present study, a novel SET has been developed to upgrade the performance of the solar dehumidifier. This new approach makes it possible to improve both thermal and drying performances.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2022

Mounir Kouhila, Younes Bahammou, Hamza Lamsyehe, Zakaria Tagnamas, Haytem Moussaoui, Ali Idlimam and Abdelkader Lamharrar

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of…

Abstract

Purpose

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of temperature and humidity on the microstructure of earth mortar using static gravimetric method.

Design/methodology/approach

A convective solar dryer was used for the pretreatment of building and solid materials for construction.

Findings

The humidity influences the mortar sorption – surface water sorption of earth mortar increased with increasing temperature.

Originality/value

The study used a novel method for pretreatment building materials by using solar dryer.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 January 2021

Younes Bahammou, Mounir Kouhila, Haytem Moussaoui, Hamza Lamsyehe, Zakaria Tagnamas, Abdelkader Lamharrar and Ali Idlimam

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics…

Abstract

Purpose

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.

Design/methodology/approach

Thermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.

Findings

The models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.

Originality/value

Evaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 3 October 2016

Fahim Ullah, Min Kang, Lubna Hassan, Ninghui Li, Jun Yang, Xingsheng Wang and Mansoor Khan Khattak

The purpose of the study was to develop a performance flat-plate solar collector that would be used as a solar drier for fruit fig (Ficus carica L). This study proposes how and…

Abstract

Purpose

The purpose of the study was to develop a performance flat-plate solar collector that would be used as a solar drier for fruit fig (Ficus carica L). This study proposes how and why solar energy is important for drying the agricultural products. This study aims to expand the domain of solar collector for different purposes and, most important, for agricultural resource normally found in the literature.

Design/methodology/approach

The paper opted for an exploratory study using the flat-plate solar collector with drying chamber for drying purposes of agricultural products. During the experiment, the data were collected with moisture content, drying rate of the product and solar irradiation falls on the collector.

Findings

This paper describes that how flat-plate collector works for agricultural products and how to reduce the moisture content in the product (fig). Efficiency of collector was evaluated under the ambient temperatures of 24°C. Efficiency also significantly increased from 53 to 55 per cent with an increase in ambient temperature from 22 to 24 °C. Figs (Ficus carica L) were dried in the drying chamber of the flat-plate solar collector. The products were dried at temperature of 55-65°C and 15 to 20 per cent humidity.

Research limitations/implications

Because of this research chosen, the research results are beneficiary for agricultural users for drying purposes. Therefore, the researchers are encouraged to dry the agricultural product with flat-plate solar collector, because it reduced the moisture content of the product very fast.

Originality/value

This paper fulfills an identified need to study that how flat-plat solar collector can be used.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 June 2021

Yaping Dai and Kaibo Deng

To reduce energy consumption, the time needed of drying, and the loss of ß-carotene content, and ascorbic acid content, response surface methodology (RSM) was employed for…

Abstract

Purpose

To reduce energy consumption, the time needed of drying, and the loss of ß-carotene content, and ascorbic acid content, response surface methodology (RSM) was employed for optimization.

Design/methodology/approach

To reduce energy consumption, the time needed of drying, and the loss of ß-carotene content, and ascorbic acid content, response surface methodology (RSM) was employed for optimization.

Findings

The results show that the optimum solar-assisted heat pump drying (SAHPD) conditions for drying pumpkin slice were: drying temperature of 67.40 °C, loading density of 1.05 kg/m3, and material thickness of 4 mm. Under these conditions, slice of pumpkin were dried in 440.637 min, where the unit energy consumption, ascorbic acid content, and ß-carotene content were 16.737 kJ/g, 25.682 mg/ (100–g dried sample), and 10.202 mg/g, respectively. The structure of the samples dried using the optimized SAHPD method exhibited a more complete cell morphology than those dried using heat pump drying when examined using scanning electronic microscopy.

Originality/value

This suggests that the optimized SAHPD conditions used in this study are important for production and processing.

Details

British Food Journal, vol. 123 no. 12
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 8 August 2019

Samuel Ayofemi Olalekan Adeyeye

Fishes are important sources of good and high-quality protein in developing countries. Spoilage and keeping quality of fish especially in the tropics is temperature dependence as…

Abstract

Purpose

Fishes are important sources of good and high-quality protein in developing countries. Spoilage and keeping quality of fish especially in the tropics is temperature dependence as high temperature and relative humidity accelerate the process of spoilage and fish keeping quality. Fish dehydration removed moisture and extended the shelf life of dried fish. Drying involves removal of moisture from fish as a result of heat and mass transfer done under controlled conditions. This study delves into various drying techniques and drying kinetics of fish.

Design/methodology/approach

The review examines fish drying kinetics and the various drying models applicable to fish drying.

Findings

This review showed that moisture content and colour of dried fish are affected by time and power level. It was also found that the moisture content of the dried fish varied according to the drying method used. Also, as drying power and drying rate varied inversely with drying time. Eight different thin layer drying models were examined for evaluation of drying data for all the experimental conditions involving fish drying. It was found that the quality of the dried fish decreased with drying. Higher values of effective moisture diffusivity have been found to increase moisture velocity within fish samples which improve removal of moisture to reach equilibrium moisture content at specified relative humidity. However, based on this, effective moisture diffusivity could be a useful parameter to design an effective drying method in terms of time, energy consumption and cost to prolong the storage life of dried fish samples. Drying kinetics and different drying models were considered and explained. The use of these models was considered to be important in choosing appropriate drying conditions for effective drying and to get good quality dried fish samples.

Research limitations/implications

The review considers few available literatures on the subject matter.

Practical implications

The review explores the possibility of creating more awareness for more in-depth research on fish drying kinetics and their usefulness in fish preservation.

Originality/value

This outcome of this study is important to researchers, policymakers and regulatory agencies in developing countries on fish preservation.

Details

Nutrition & Food Science, vol. 49 no. 5
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 February 1987

P.P. Rajendran

One of the options open to libraries and other information service organisations in developing countries wishing to move into the age of microcomputer automation is that of…

Abstract

One of the options open to libraries and other information service organisations in developing countries wishing to move into the age of microcomputer automation is that of utilising general purpose software, especially since many do not have extensive computer facilities.

Details

Program, vol. 21 no. 2
Type: Research Article
ISSN: 0033-0337

Article
Publication date: 1 July 2021

Ataollah Khanlari, Adnan Sözen, Faraz Afshari, Azim Doğuş Tuncer, Ümit Ağbulut and Zeynep Aytaç Yılmaz

Over the recent years, solar energy has received outstanding attention from researchers. Solar energy applications and related large-scale projects are increasing to meet growing…

Abstract

Purpose

Over the recent years, solar energy has received outstanding attention from researchers. Solar energy applications and related large-scale projects are increasing to meet growing global energy demand as an economical, non-polluting and renewable energy source. The purpose of this study is investigating different plenum and absorber configurations of solar air heating wall (SAHW) experimentally and numerically.

Design/methodology/approach

In this study, various configurations of SAHW have been numerically simulated to determine the most effective design. According to the simulation results, two SAHWs with various plenum thicknesses have been fabricated and tested at different conditions.

Findings

Numerical simulation results indicated that parallel-flow SAHWs exhibited better performance in comparison with other placements of absorber plate. Regarding to the experimentally attained results, the highest thermal efficiency was reached to 80.51%. Also, the average deviation between experimentally and numerically obtained outlet temperature is 5.5%.

Originality/value

Considering the obtained results in the present study, designed SAHW has admissible efficiency to be used in various industrial and residential applications such as; air preheating, space heating and drying.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000