Search results

1 – 10 of 90
Article
Publication date: 31 January 2024

Tan Zhang, Zhanying Huang, Ming Lu, Jiawei Gu and Yanxue Wang

Rotating machinery is a crucial component of large equipment, and detecting faults in it accurately is critical for reliable operation. Although fault diagnosis methods based on…

Abstract

Purpose

Rotating machinery is a crucial component of large equipment, and detecting faults in it accurately is critical for reliable operation. Although fault diagnosis methods based on deep learning have been significantly developed, the existing methods model spatial and temporal features separately and then weigh them, resulting in the decoupling of spatiotemporal features.

Design/methodology/approach

The authors propose a spatiotemporal long short-term memory (ST-LSTM) method for fault diagnosis of rotating machinery. The authors collected vibration signals from real rolling bearing and gearing test rigs for verification.

Findings

Through these two experiments, the authors demonstrate that machine learning methods still have advantages on small-scale data sets, but our proposed method exhibits a significant advantage due to the simultaneous modeling of the time domain and space domain. These results indicate the potential of the interactive spatiotemporal modeling method for fault diagnosis of rotating machinery.

Originality/value

The authors propose a ST-LSTM method for fault diagnosis of rotating machinery. The authors collected vibration signals from real rolling bearing and gearing test rigs for verification.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Abdelmalek Saidoune, Hamza Houassine, Samir Bensaid, Nacera Yassa and Sadia Abbas

This paper aims to investigate the efficacy of teeth flux sensors in detecting, locating and assessing the severity of short-circuit faults in the stator windings of induction…

Abstract

Purpose

This paper aims to investigate the efficacy of teeth flux sensors in detecting, locating and assessing the severity of short-circuit faults in the stator windings of induction machines.

Design/methodology/approach

The experimental study involves inducing short-circuit winding turn variations on the induction machine’s stator and continuously measuring the RMS values across teeth flux sensors. Two crucial steps are taken for machine diagnosis: measurements under load operating conditions for fault detection and measurements under no-load conditions to determine fault location and severity.

Findings

The experimental results demonstrate that the proposed approach using teeth flux sensors is reliable and effective in detecting, locating and evaluating the severity of stator winding faults.

Research limitations/implications

While this study focuses on short-circuit faults, future research could explore other fault types and alternative sensor configurations to enhance the comprehensiveness of fault diagnosis.

Practical implications

The methodology outlined in this paper holds the potential to significantly reduce maintenance time and costs for induction machines, leading to substantial savings for companies.

Originality/value

This research contributes to the field by presenting an innovative approach that uses teeth flux sensors for a comprehensive fault diagnosis in induction machines. The originality lies in the effectiveness of this approach in providing reliable fault detection, location and severity evaluation.

Article
Publication date: 6 May 2024

Ahmed Taibi, Said Touati, Lyes Aomar and Nabil Ikhlef

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and…

Abstract

Purpose

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and diagnosing these defects is imperative to ensure the longevity of induction machines and preventing costly downtime. The purpose of this paper is to develop a novel approach for diagnosis of bearing faults in induction machine.

Design/methodology/approach

To identify the different fault states of the bearing with accurately and efficiently in this paper, the original bearing vibration signal is first decomposed into several intrinsic mode functions (IMFs) using variational mode decomposition (VMD). The IMFs that contain more noise information are selected using the Pearson correlation coefficient. Subsequently, discrete wavelet transform (DWT) is used to filter the noisy IMFs. Second, the composite multiscale weighted permutation entropy (CMWPE) of each component is calculated to form the features vector. Finally, the features vector is reduced using the locality-sensitive discriminant analysis algorithm, to be fed into the support vector machine model for training and classification.

Findings

The obtained results showed the ability of the VMD_DWT algorithm to reduce the noise of raw vibration signals. It also demonstrated that the proposed method can effectively extract different fault features from vibration signals.

Originality/value

This study suggested a new VMD_DWT method to reduce the noise of the bearing vibration signal. The proposed approach for bearing fault diagnosis of induction machine based on VMD-DWT and CMWPE is highly effective. Its effectiveness has been verified using experimental data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2022

Vinod Nistane

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the…

Abstract

Purpose

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the amount of deteriorate at any time, this paper aims to present a prognostics approach based on integrating optimize health indicator (OHI) and machine learning algorithm.

Design/methodology/approach

Proposed optimum prediction model would be used to evaluate the remaining useful life (RUL) of REBs. Initially, signal raw data are preprocessing through mother wavelet transform; after that, the primary fault features are extracted. Further, these features process to elevate the clarity of features using the random forest algorithm. Based on variable importance of features, the best representation of fault features is selected. Optimize the selected feature by adjusting weight vector using optimization techniques such as genetic algorithm (GA), sequential quadratic optimization (SQO) and multiobjective optimization (MOO). New OHIs are determined and apply to train the network. Finally, optimum predictive models are developed by integrating OHI and artificial neural network (ANN), K-mean clustering (KMC) (i.e. OHI–GA–ANN, OHI–SQO–ANN, OHI–MOO–ANN, OHI–GA–KMC, OHI–SQO–KMC and OHI–MOO–KMC).

Findings

Optimum prediction models performance are recorded and compared with the actual value. Finally, based on error term values best optimum prediction model is proposed for evaluation of RUL of REBs.

Originality/value

Proposed OHI–GA–KMC model is compared in terms of error values with previously published work. RUL predicted by OHI–GA–KMC model is smaller, giving the advantage of this method.

Article
Publication date: 2 May 2024

Neveen Barakat, Liana Hajeir, Sarah Alattal, Zain Hussein and Mahmoud Awad

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure…

Abstract

Purpose

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure modes and identify the leaky/faulty cylinder. The successful implementation of the proposed scheme will reduce energy consumption, scrap and rework, and time to repair.

Design/methodology/approach

Effective implementation of maintenance is important to reduce operation cost, improve productivity and enhance quality performance at the same time. Condition-based monitoring is an effective maintenance scheme where maintenance is triggered based on the condition of the equipment monitored either real time or at certain intervals. Pneumatic air systems are commonly used in many industries for packaging, sorting and powering air tools among others. A common failure mode of pneumatic cylinders is air leaks which is difficult to detect for complex systems with many connections. The proposed method consists of monitoring the stroke speed profile of the piston inside the pneumatic cylinder using hall effect sensors. Statistical features are extracted from the speed profiles and used to develop a fault detection machine learning model. The proposed method is demonstrated using a real-life case of tea packaging machines.

Findings

Based on the limited data collected, the ensemble machine learning algorithm resulted in 88.4% accuracy. The algorithm can detect failures as soon as they occur based on majority vote rule of three machine learning models.

Practical implications

Early air leak detection will improve quality of packaged tea bags and provide annual savings due to time to repair and energy waste reduction. The average annual estimated savings due to the implementation of the new CBM method is $229,200 with a payback period of less than two years.

Originality/value

To the best of the authors’ knowledge, this paper is the first in terms of proposing a CBM for pneumatic systems air leaks using piston speed. Majority, if not all, current detection methods rely on expensive equipment such as infrared or ultrasonic sensors. This paper also contributes to the research gap of economic justification of using CBM.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 August 2023

Yandong Hou, Zhengbo Wu, Xinghua Ren, Kaiwen Liu and Zhengquan Chen

High-resolution remote sensing images possess a wealth of semantic information. However, these images often contain objects of different sizes and distributions, which make the…

Abstract

Purpose

High-resolution remote sensing images possess a wealth of semantic information. However, these images often contain objects of different sizes and distributions, which make the semantic segmentation task challenging. In this paper, a bidirectional feature fusion network (BFFNet) is designed to address this challenge, which aims at increasing the accurate recognition of surface objects in order to effectively classify special features.

Design/methodology/approach

There are two main crucial elements in BFFNet. Firstly, the mean-weighted module (MWM) is used to obtain the key features in the main network. Secondly, the proposed polarization enhanced branch network performs feature extraction simultaneously with the main network to obtain different feature information. The authors then fuse these two features in both directions while applying a cross-entropy loss function to monitor the network training process. Finally, BFFNet is validated on two publicly available datasets, Potsdam and Vaihingen.

Findings

In this paper, a quantitative analysis method is used to illustrate that the proposed network achieves superior performance of 2–6%, respectively, compared to other mainstream segmentation networks from experimental results on two datasets. Complete ablation experiments are also conducted to demonstrate the effectiveness of the elements in the network. In summary, BFFNet has proven to be effective in achieving accurate identification of small objects and in reducing the effect of shadows on the segmentation process.

Originality/value

The originality of the paper is the proposal of a BFFNet based on multi-scale and multi-attention strategies to improve the ability to accurately segment high-resolution and complex remote sensing images, especially for small objects and shadow-obscured objects.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 December 2023

Vikram Singh, Nirbhay Sharma and Somesh Kumar Sharma

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in…

Abstract

Purpose

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in Manufacturing Industries.

Design/methodology/approach

This study formulated a framework of six factors and twenty-eight variables (explored in the literature). A hybrid approach of Multi-Criteria Decision-Making Technique (MCDM) was employed in the framework to prioritize, rank and establish interrelationships between factors and variables grouped under them.

Findings

The research findings reveal that the “Manufacturing Process” is the most essential factor, while “Integration Manufacturing with Maintenance” is highly impactful on the other factors to eliminate the flaws that may cause system breakdown. The findings of this study also provide a ranking order for variables to increase the performance of factors that will assist manufacturers in reducing maintenance efforts and enhancing process efficiency.

Practical implications

The ranking order developed in this study may assist manufacturers in reducing maintenance efforts and enhancing process efficiency. From the manufacturer’s perspective, this research presented MAT as a key aspect in dealing with the complexity of manufacturing operations in manufacturing organizations. This research may assist industrial management with insights into how they can lower the probability of breakdown, which will decrease expenditures, boost productivity and enhance overall efficiency.

Originality/value

This study is an original contribution to advancing MAT’s theory and empirical applications in manufacturing organizations to decrease breakdown probability.

1 – 10 of 90