Search results

1 – 7 of 7
Article
Publication date: 19 June 2019

Seyed Hamid Delbari, Amir Nejat, Mohammad H. Ahmadi, Ali Khaleghi and Marjan Goodarzi

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Abstract

Purpose

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Design/methodology/approach

Incompressible unsteady reynolds-averaged navier-stokes (URANS) approach using gamma–theta turbulence model is conducted to obtain the time accurate turbulent flow field. The Ffowcs Williams and Hawkings (FW-H) acoustic analogy formulation is used for noise predictions at optimal tip speed ratio (TSR).

Findings

The mean torque and power coefficients are compared with the experimental data and acceptable agreement is observed. The total and Mono+Dipole noise graphs are presented. A discrete tonal component at low frequencies in all graphs is attributed to the blade passing frequency at the given TSR. According to the noise prediction results, Bach type rotor has the lowest level of noise emission. The effect of TSR on the noise level from the Bach rotor is investigated. A direct relation between angular velocity and the noise emission is found.

Practical implications

The savonius rotor is a type of vertical axis wind turbines suited for mounting in the vicinity of residential areas. Also, wind turbines wherein operation are efficient sources of tonal and broadband noises and affect the inhabitable environment adversely. Therefore, the acoustic pollution assessment is essential for the installation of wind turbines in residential areas.

Originality/value

This study aims to investigate the radiated noise level of four common Savonius rotor blade profiles, namely, Bach type, Benesh type, semi-elliptic and conventional. As stated above, numbers of studies exploit the URANS method coupled with the FW-H analogy to predict the aeroacoustics behavior of wind turbines. Therefore, this approach is chosen in this research to deal with the aeroacoustics and aerodynamic calculation of the flow field around the aforementioned Savonius blade profiles. The effect of optimal TSR on the emitted noise and the contribution of thickness, loading and quadrupole sources are of interest in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Guo Zhong, Jun Huang and Mingxu Yi

The purpose of this paper is to reduce the acoustic noise of helicopter ducted tail rotor.

Abstract

Purpose

The purpose of this paper is to reduce the acoustic noise of helicopter ducted tail rotor.

Design/methodology/approach

To predict the noise accurately, a thin-body boundary element method (BEM)/Ffowcs Williams–Hawkings method is developed in this paper. It is a hybrid method combining the BEM with computational aeroacoustics and can be used efficiently to predict the propagation of sound wave in the duct.

Findings

Compared with the experimental results, the proposed method of acoustic noise is rather desirable.

Practical implications

Then several geometry parameters are modified to investigate the noise reduction of ducted tail rotor by using the numerical prediction method.

Originality/value

The aerodynamic and acoustic performance of different modification tasks is discussed. These results demonstrate the validity of design parameters modification of ducted tail rotor in acoustic noise reduction.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 May 2023

Xu Zhang, Hao Jing, Qing Zhang, Ruijun Zhang and Lixin Liu

This paper aims to guide the implementation of noise reduction measures in hoistway and reduce the aerodynamic noise generated by elevator operation, this paper aims to propose an…

Abstract

Purpose

This paper aims to guide the implementation of noise reduction measures in hoistway and reduce the aerodynamic noise generated by elevator operation, this paper aims to propose an aerodynamic noise analysis method that can solve the flow field in hoistway.

Design/methodology/approach

A turbulence-acoustic model solving the flow field in a hoistway and a numerical wind hoistway model of the ultra-high-speed elevator were established by using large eddy simulation (LES) and Curle acoustic theory.

Findings

The characteristics of pulsating flow field and aerodynamic noise around ultra-high-speed elevator are analyzed. The asymmetric characteristics of the flow field could be observed using the turbulent kinetic energy and the instantaneous vortexes in the wind hoistway model. Vortex shedding, air flow separation and recombination around the car were the key factors for aerodynamic noise generation. The sound pressure level was approximately linear to the logarithm of car speed. The increase of car deflection angle in a certain range would reduce the peak frequency of wake noise and increase the sound pressure level (SPL) value.

Originality/value

This paper provides important guidance for researches studying the aerodynamic noise in the hoistway and the technical personnel that look for the reduction measures, which greatly improves the shortcomings in the numerical simulation of the aerodynamic noise of the hoistway.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 October 2018

Yunpeng Ma and Na Guo

A numerical study on the aerodynamic noise generation of a high efficiency propeller is carried out.

Abstract

Purpose

A numerical study on the aerodynamic noise generation of a high efficiency propeller is carried out.

Design/methodology/approach

Three-dimensional numerical simulation based on Reynolds averaged N-S model is performed to obtain the aerodynamic performance of the propeller. Then, the result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A which was derived from Ffowcs Williams–Hawkings equation and is compared with the measurements.

Findings

Moreover, the fan is modified for noise reduction by changing its geometrical parameters such as span, chord length and torsion angle.

Originality/value

The variation trend of aerodynamic and acoustic are compared and discussed for different modification tasks. Some meaningful conclusions are drawn on the noise reduction of propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 December 2022

Jiaru Shao, Xueping Mo, Zijun Zheng and Yu Yang

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great…

Abstract

Purpose

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great significance to study the jet noise characteristics of double S-bend nozzles.

Design/methodology/approach

The multiparameter coupling and super-ellipse design methods are used to design the cross section of double S-bend nozzle. Taking unsteady flow information as the equivalent sound source, the noise signal at the far-field monitoring points were calculated with Ffowcs Williams–Hawkings (FW–H) method, and then, the sound source characteristics of the double S-bend nozzle are analyzed.

Findings

The results show that the internal flow of the S-bend nozzle with rectangular section is smoothed and the aerodynamic performance is better than super-ellipse section, the shear layer length of rectangular section is longer, the thickness is smaller and the mixing ability is stronger. The sound pressure level of the two S-bend nozzles decreases with the increase of the monitoring angle, and the sound pressure on the horizontal plane is greater than the vertical plane. In the direction of 40°–120°, the jet noise of rectangular nozzle is smaller, and the multiparameter coupled rectangular cross section structure is more applicable.

Practical implications

It is beneficial to reduce the jet noise of the engine tail nozzle and improve the stealth performance of the aircraft.

Originality/value

There is very little research on the jet noise characteristics of the double S-bend nozzle. The multiparameter coupling and the super-ellipse method are used to design the nozzle flow section to study the aerodynamic performance and jet noise characteristics of the double S-bend nozzle and to improve the acoustic stealth characteristics of the aircraft.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2021

Zi Kan, Daochun Li, Shiwei Zhao, Jinwu Xiang and Enlai Sha

This paper aims to assess the aeroacoustic and aerodynamic performance of a morphing airfoil with a flexible trailing edge (FTE). The objective is to make a comparison of the…

Abstract

Purpose

This paper aims to assess the aeroacoustic and aerodynamic performance of a morphing airfoil with a flexible trailing edge (FTE). The objective is to make a comparison of the aerodynamic noise characteristics between the conventional airfoil with a flap and morphing airfoil and analyse the noise reduction mechanisms of the morphing airfoil.

Design/methodology/approach

The computational fluid dynamic method was used to calculate the aerodynamic coefficients of morphing airfoil and the Ffowcs-Williams and Hawking’s acoustic analogy methods were performed to predict the far-field noise of different airfoils.

Findings

Results show that compared with the conventional airfoil, the morphing airfoil can generate higher lift and lower noise, but a greater drag. Additionally, the noise caused by the one-unit lift of the morphing airfoil is significantly lower than that of the conventional airfoil. For the morphing airfoil, the shedding vortex in the trailing edge was the main noise resource. As the angle of attack (AoA) increases, the overall sound pressure level of the morphing airfoil increases significantly. With the increase of the trailing edge deflection angle, the amplitude and the period of sound pressure of the morning airfoil fluctuation increase.

Practical implications

Presented results could be very useful during designing the morphing airfoil with FTE, which has significant advantages in aerodynamic efficiency and aeroacoustic performance.

Originality/value

This paper presents the aerodynamic and aeroacoustic characteristics of the morphing airfoil. The effect of trailing edge deflection angle and AoA on morphing airfoil was investigated. In the future, using a morphing airfoil instead of a traditional flap can reduce the aircraft`s fuel consumption and noise pollution.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2016

Man Zhang and Abdelkader Frendi

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and…

Abstract

Purpose

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and noise signature of a NACA0012 airfoil with and without leading edge waviness, and located in the wake of a cylinder using the hybrid RANS-LES method.

Design/methodology/approach

The mean flow Mach number is 0.2 and the angle of attack used is 2°. After benchmarking the method using existing experimental results, unsteady computations were then carried-out on both airfoil geometries and for a 2° angle of attack.

Findings

Results from these computations confirmed the aerodynamic benefits of the leading edge waviness. Moreover, the wavy leading edge airfoil was found to be at least 4 dB quieter than its non-wavy counterpart. In-depth analysis of the computational results revealed that the wavy leading edge airfoil breaks up the large coherent structures which are then convected at higher speeds down the trough region of the waviness in agreement with previous experimental observations. This result is supported by both the two-point and space-time correlations of the wall pressure.

Research limitations/implications

The limitations of the current findings reside in the fact that both the Reynolds number and the flow Mach number are low, therefore not applicable to aircrafts. In order to extend the study to practical aircrafts one needs huge grids and large computational resources.

Practical implications

The results obtained here could have a huge implications on the design of future aircrafts and spacecrafts. More specifically, the biggest benefit from such redesign is the reduction of acoustic signature as well as increased efficiency in fuel consumption.

Social implications

Reducing acoustic signature from aircrafts has been a major research thrust for NASA and Federal Aviation Administration. The social impact of such reduction would be improved quality of life in airport communities. For military aircrafts, this could results in reduced detectability and hence saving lives.

Originality/value

Humpback Whales have been studied by various researchers to understand the effects of leading edge “tubercles” on flow structures. What is new in this study is the numerical confirmation of the effects of the tubercles on the flow structures and the resulting noise radiations. It is shown through the use of two-point correlations and space-time correlations that the flow structures in the trough area are indeed vortex tubes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 7 of 7