Search results

1 – 10 of over 24000
Article
Publication date: 10 May 2019

Fatemeh Shaker, Arash Shahin and Saeed Jahanyan

The purpose of this paper is to propose an integrative approach for improving failure modes and effects analysis (FMEA).

Abstract

Purpose

The purpose of this paper is to propose an integrative approach for improving failure modes and effects analysis (FMEA).

Design/methodology/approach

An extensive literature review on FMEA has been performed. Then, an integrative approach has been proposed based on literature review. The proposed approach is an integration of FMEA and quality function deployment (QFD). The proposed approach includes a two-phase QFD. In the first phase, failure modes are prioritized based on failure effects and in the second phase, failure causes are prioritized based on failure modes. The proposed approach has been examined in a case example at the blast furnace operation of a steel-manufacturing company.

Findings

Results of the case example indicated that stove shell crack in hot blast blower, pump failure in cooling water supply pump and bleeder valves failed to operate are the first three important failure modes. In addition, fire and explosion are the most important failure effects. Also, improper maintenance, over pressure and excess temperature are the most important failure causes. Findings also indicated that the proposed approach with the consideration of interrelationships among failure effects, failure mode and failure causes can influence and adjust risk priority number (RPN) in FMEA.

Research limitations/implications

As manufacturing departments are mostly dealing with failure effects and modes of machinery and maintenance departments are mostly dealing with causes of failures, the proposed model can support better coordination and integration between the two departments. Such support seems to be more important in firms with continuous production lines wherein line interruption influences response to customers more seriously. A wide range of future study opportunities indicates the attractiveness and contribution of the subject to the knowledge of FMEA.

Originality/value

Although the literature indicates that in most of studies the outcomes of QFD were entered into FMEA and in some studies the RPN of FMEA was entered into QFD as importance rating, the proposed approach is a true type of the so-called “integration of FMEA and QFD” because the three main elements of FMEA formed the structure of QFD. In other words, the proposed approach can be considered as an innovation in the FMEA structure, not as a data provider prior to it or a data receiver after it.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 August 2021

Fatemeh Shaker, Arash Shahin and Saeed Jahanyan

This paper aims to develop a system dynamics (SD) model to identify causal relationships among the elements of failure modes and effects analysis (FMEA), i.e. failure modes

Abstract

Purpose

This paper aims to develop a system dynamics (SD) model to identify causal relationships among the elements of failure modes and effects analysis (FMEA), i.e. failure modes, effects and causes.

Design/methodology/approach

A causal loop diagram (CLD) has been developed based on the results obtained from interdependencies and correlations analysis among the FMEA elements through applying the integrated approach of FMEA-quality function deployment (QFD) developed by Shaker et al. (2019). The proposed model was examined in a steel manufacturing company to identify and model the causes and effects relationships among failure modes, effects and causes of a roller-transmission system.

Findings

Findings indicated interactions among the most significant failure modes, effects and causes. Moreover, corrective actions defined to eliminate or relieve critical failure causes. Consequently, production costs decreased, and the production rate increased due to eliminated/decreased failure modes.

Practical implications

The application of CLD illustrates causal relationships among FMEA elements in a more effective way and results in a more precise recognition of the root causes of the potential failure modes and their easy elimination/decrease. Therefore, applying the proposed approach leads to a better analysis of the interactions among FMEA elements, decreased system's failure rate and increased system availability.

Originality/value

The literature review indicated a few studies on the application of SD methodology in the maintenance area, and no study was performed on the causal interactions among FMEA elements through an FMEA-QFD based SD approach. Although the interactions of these elements are significant and helpful in risks ranking, researchers fail to investigate them sufficiently.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 August 2015

Hu-Chen Liu, Jian-Xin You, Xue-Feng Ding and Qiang Su

– The purpose of this paper is to develop a new failure mode and effect analysis (FMEA) framework for evaluation, prioritization and improvement of failure modes.

1685

Abstract

Purpose

The purpose of this paper is to develop a new failure mode and effect analysis (FMEA) framework for evaluation, prioritization and improvement of failure modes.

Design/methodology/approach

A hybrid multiple criteria decision-making method combining VIKOR, decision-making trial and evaluation laboratory (DEMATEL) and analytic hierarchy process (AHP) is used to rank the risk of the failure modes identified in FMEA. The modified VIKOR method is employed to determine the effects of failure modes on together. Then the DEMATEL technique is used to construct the influential relation map among the failure modes and causes of failures. Finally, the AHP approach based on the DEMATEL is utilized to obtain the influential weights and give the prioritization levels for the failure modes.

Findings

A case study of diesel engine’s turbocharger system is provided to illustrate the potential application and benefits of the proposed FMEA approach. Results show that the new risk priority model can be effective in helping analysts find the high risky failure modes and create suitable maintenance strategies.

Practical implications

The proposed FMEA can overcome the shortcomings and improve the effectiveness of the traditional FMEA. Particularly, the dependence and interactions between different failure modes and effects have been addressed by the new failure analysis method.

Originality/value

This paper presents a systemic analytical model for FMEA. It is able to capture the complex interrelationships among various failure modes and effects and provide guidance to analysts by setting the suitable maintenance strategies to improve the safety and reliability of complex systems.

Details

International Journal of Quality & Reliability Management, vol. 32 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 June 2011

Vinay Sharma, Minakshi Kumari and Santosh Kumar

The purpose of this analysis was to attempt to improve the reliability of a rotor support system of a modern aircraft engine.

1209

Abstract

Purpose

The purpose of this analysis was to attempt to improve the reliability of a rotor support system of a modern aircraft engine.

Design/methodology/approach

The process used for carrying out FMEA is specified by MIL‐STD‐1629A procedure for carrying out failure mode, effects and criticality analysis.

Findings

In increasing demand in the avionics sector, particularly in modern defence and civil aircraft, safety and reliability are the prime concerns to complete the mission successfully. Technocrats are made to rethink the safety of complete systems by adding redundancy to the critical activities. A rotor support system (RSS) is an integral part of a gas turbine engine used in any aircraft. As its name implies, the rotor support system shares the load of the rotating component of an engine, hence the rotor support system plays a vital role in any aircraft engine. It shares the load of compressor rotor and stator, turbine rotor and stator, inter‐casing, and exhaust system of a gas turbine engine. Any failure in such a system may make the entire aircraft fail. Therefore it is worth carrying out Failure Modes and Effects Analysis (FMEA) on such a critical system. FMEA is one of the effective reliability assessment tools, which evaluate systematically and document the potential failure modes of a system or equipment and their causes. It helps in grading the severity of all potential failure modes and is useful in carrying out the changes in the early phase of design. The analysis starts with the potential failure of the smallest component at the final indenture and goes up to the initial indenture level.

Originality/value

The paper adds insight into the reliability improvement of the rotor support system of modern aircraft.

Details

International Journal of Quality & Reliability Management, vol. 28 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 July 2022

Saleh Abu Dabous, Tareq Zadeh and Fakhariya Ibrahim

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the…

Abstract

Purpose

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum overall cost.

Design/methodology/approach

The research includes a review of the literature around formwork selection and analysis of data collected from the building construction industry to understand material failure modes. An FMECA-based model that estimates the total cost of a formwork system is developed by conducting a two-phased semi-structured interview and regression and statistical analyses. The model comprises material, manpower and failure mode costs. A case study of fifteen buildings is analysed using data collected from construction projects in the UAE to validate the model.

Findings

Results obtained indicate an average accuracy of 89% in predicting the total formwork cost using the proposed method. Moreover, results show that the costs incurred by failure modes account for 11% of the total cost on average.

Research limitations/implications

The analysis is limited to direct costs and costs associated with risks; other costs and risk factors are excluded. The proposed framework serves as a guide to construction project managers to enhance decision-making by addressing the indirect cost of failure modes.

Originality/value

The research proposes a novel formwork system selection method that improves upon the subjective conventional selection process by incorporating the risks and uncertainties associated with the failure modes of formwork systems into the decision-making process.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 24 April 2007

M. Braglia, G. Fantoni and M. Frosolini

The purpose of this paper is to provide a structured methodology for performing build‐in reliability (BIR) investigation during a new product development cycle.

2652

Abstract

Purpose

The purpose of this paper is to provide a structured methodology for performing build‐in reliability (BIR) investigation during a new product development cycle.

Design/methodology/approach

The methodology in this paper represents an extension of the Quality Functional Deployment/House of Quality (QFD/HoQ) concepts to reliability studies. It is able to translate the reliability requisites of customers into functional requirements for the product in a structured manner based on a Failure Mode And Effect Analysis (FMEA). Besides, it then allows it to build a completely new operative tool, named House of Reliability (HoR), that enhances standard analyses, introducing the most significant correlations among failure modes. Using the results from HoR, a cost‐worth analysis can be easily performed, making it possible to analyse and to evaluate the economical consequences of a failure.

Findings

The paper finds that the application of the proposed approach allows users to identify and control the design requisites affecting reliability. The methodology enhances the reliability analysis introducing and managing the correlations among failure modes, splitting the severity into a detailed series of basic severity aspects, performing also cost/worth assessments.

Practical implications

It is shown that the methodology enables users to finely analyse failure modes by splitting severity according to the product typology and the importance of each Severity criterion according to laws or international standards. Moreover the methodology is able to consider the “domino effects” and so to estimate the impact of the correlation between the causes of failure. Finally a cost/worth analysis evaluates the economical consequences of a failure with respect to the incurred costs to improve the final reliability level of the product.

Originality/value

The paper proposes a completely new approach, robust, structured and useful in practice, for reliability analysis. The methodology, within an integrated approach, overcomes some of the largely known limits of standard FMECA: it takes into account multiple criteria, differently weighted, it analyses the product considering not only the direct consequence of a failure, but also the reaction chain originated by a starting failure.

Details

International Journal of Quality & Reliability Management, vol. 24 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 6 June 2016

Soumen Kumar Roy, A K Sarkar and Biswajit Mahanty

The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using…

Abstract

Purpose

The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited.

Design/methodology/approach

Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations.

Findings

It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system.

Originality/value

This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 July 1996

Sheng‐Hsien (Gary) Teng and Shin‐Yann (Michael) Ho

Discusses the implementation of failure mode and effects analysis (FMEA) for both product design and process control. FMEA is implemented in two ways to ensure that the…

7964

Abstract

Discusses the implementation of failure mode and effects analysis (FMEA) for both product design and process control. FMEA is implemented in two ways to ensure that the reliability requirements are met for the production of an airbag inflator. Design FMEA is performed to generate a process control plan, visual aids, and a process verification list. Design FMEA and process FMEA are integrated through reliability prediction and supplier PPM reports. The supplier PPM reports contain the information that can be employed to update the probabilities used in design FMEA. The results of reliability predictions are fed back to eliminate the design weakness. Demonstrates the integrated procedure of the FMEA approach and discusses the relationships among useful tools.

Details

International Journal of Quality & Reliability Management, vol. 13 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 June 2003

Marcello Braglia, Marco Frosolini and Roberto Montanari

This paper presents a tool for reliability and failure mode analysis based on an advanced version of the popular failure mode, effects and criticality analysis (FMECA…

2234

Abstract

This paper presents a tool for reliability and failure mode analysis based on an advanced version of the popular failure mode, effects and criticality analysis (FMECA) procedure. To help the analyst formulating efficiently effective criticality assessments of the possible causes of failure, the fuzzy logic technique is adopted. Particular attention has been devoted to support the maintenance staff with a fuzzy criticality assessment model easy to implement and design. To test the proposed methodology, an actual application concerning a process plant in milling field for human consumption flour is showed in the paper.

Details

International Journal of Quality & Reliability Management, vol. 20 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 December 2005

Rajiv Kumar Sharma, Dinesh Kumar and Pradeep Kumar

To permit the system safety and reliability analysts to evaluate the criticality or risk associated with item failure modes.

5264

Abstract

Purpose

To permit the system safety and reliability analysts to evaluate the criticality or risk associated with item failure modes.

Design/methodology/approach

The factors considered in traditional failure mode and effect analysis (FMEA) for risk assessment are frequency of occurrence (Sf), severity (S) and detectability (Sd) of an item failure mode. Because of the subjective and qualitative nature of the information and to make the analysis more consistent and logical, an approach using fuzzy logic is proposed. In the proposed approach, these parameters are represented as members of a fuzzy set fuzzified by using appropriate membership functions and are evaluated in fuzzy inference engine, which makes use of well‐defined rule base and fuzzy logic operations to determine the criticality/riskiness level of the failure. The fuzzy conclusion is then defuzzified to get risk priority number. The higher the value of RPN, the greater will be the risk and lower the value of RPN, and the lesser will be the risk. The fuzzy linguistic assessment model was developed using toolbox platform of MATLAB 6.5 R.13.

Findings

The applicability of the proposed approach is investigated with the help of an illustrative case study from the paper industry. Fuzzy risk assessment is carried out for prioritizing failure causes of the hydraulic system, a primary element of the feeding system. The results provide an alternate ranking to that obtained by the traditional method. It is concluded from the study that the fuzzy logic‐based approach not only resolves the limitations associated with traditional methodology for RPN evaluation but also permits the experts to combine probability of occurrence (Sf), severity (S) and detectability (Sd) of failure modes in a more flexible and realistic manner by using their judgement, experience and expertise.

Originality/value

The paper integrates the use of fuzzy logic and expert database with FMEA and may prove helpful to system safety and reliability analysts while conducting failure mode and effect analysis to prioritize failures for taking corrective or remedial actions.

Details

International Journal of Quality & Reliability Management, vol. 22 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 24000