Search results

11 – 20 of over 8000
Article
Publication date: 17 June 2020

Tiago Oliveira, Wilber Vélez and Artur Portela

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 March 2020

Mateus Rauen, Roberto Dalledone Machado and Marcos Arndt

This study aims to present a new hybrid formulation based on non-uniform rational b-splines functions and enrichment strategies applied to free and forced vibration of straight…

Abstract

Purpose

This study aims to present a new hybrid formulation based on non-uniform rational b-splines functions and enrichment strategies applied to free and forced vibration of straight bars and trusses.

Design/methodology/approach

Based on the idea of enrichment from generalized finite element method (GFEM)/extended finite element method (XFEM), an extended isogeometric formulation (partition of unity isogeometric analysis [PUIGA]) is conceived. By numerical examples the methods are tested and compared with isogeometric analysis, finite element method and GFEM in terms of convergence, error spectrum, conditioning and adaptivity capacity.

Findings

The results show a high convergence rate and accuracy for PUIGA and the advantage of input enrichment functions and material parameters on parametric space.

Originality/value

The enrichment strategies demonstrated considerable improvements in numerical solutions. The applications of computer-aided design mapped enrichments applied to structural dynamics are not known in the literature.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2015

Amir R. Khoei, R. Yasbolaghi and S.O.R. Biabanaki

In this paper, the polygonal-FEM technique is presented in modeling large deformation – large sliding contact on non-conformal meshes. The purpose of this paper is to present a…

Abstract

Purpose

In this paper, the polygonal-FEM technique is presented in modeling large deformation – large sliding contact on non-conformal meshes. The purpose of this paper is to present a new technique in modeling arbitrary interfaces and discontinuities for non-linear contact problems by capturing discontinuous deformations in elements cut by the contact surface in uniform non-conformal meshes.

Design/methodology/approach

The geometry of contact surface is used to produce various polygonal elements at the intersection of the interface with the regular FE mesh, in which the extra degrees-of-freedom are defined along the interface. The contact constraints are imposed between polygonal elements produced along the contact surface through the node-to-surface contact algorithm.

Findings

Numerical convergence analysis is carried out to study the convergence rate for various polygonal interpolation functions, including the Wachspress interpolation functions, the metric shape functions, the natural neighbor-based shape functions, and the mean value shape functions. Finally, numerical examples are solved to demonstrate the efficiency of proposed technique in modeling contact problems in large deformations.

Originality/value

A new technique is presented based on the polygonal-FEM technique in modeling arbitrary interfaces and discontinuities for non-linear contact problems by capturing discontinuous deformations in elements cut by the contact surface in uniform non-conformal meshes.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 May 2023

Bahador Bahrami, Mohammad Reza Mehraban, Seyed Saeid Rahimian Koloor and Majid R. Ayatollahi

The purpose of this study is to develop an efficient numerical procedure for simulating the effect of printing orientation, as one of the primary sources of anisotropy in…

Abstract

Purpose

The purpose of this study is to develop an efficient numerical procedure for simulating the effect of printing orientation, as one of the primary sources of anisotropy in 3D-printed components, on their fracture properties.

Design/methodology/approach

The extended finite element method and the cohesive zone model (XFEM-CZM) are used to develop subroutines for fracture simulation. The ability of two prevalent models, i.e. the continuous-varying fracture properties (CVF) model and the weak plane model (WPM), and a combination of both models (WPM-CVF) are evaluated to capture fracture behavior of the additively manufactured samples. These models are based on the non-local and local forms of the anisotropic maximum tangential stress criterion. The numerical models are assessed by comparing their results with experimental outcomes of 16 different configurations of polycarbonate samples printed using the material extrusion technique.

Findings

The results demonstrate that the CVF exaggerates the level of anisotropy, and the WPM cannot detect the mild anisotropy of 3D-printed parts, while the WPM-CVF produces the best results. Additionally, the non-local scheme outperforms the local approach in terms of finite element analysis performance, such as mesh dependency, robustness, etc.

Originality/value

This paper provides a method for modeling anisotropic fracture in 3D-printed objects. A new damage model based on a combination of two prevalent models is offered. Moreover, the developed subroutines for implementing the non-local anisotropic fracture criterion enable a reliable crack propagation simulation in media with varying degrees of complication, such as anisotropy.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2015

Debasis Deb, Ranjan Pramanik and Kamal Ch Das

– The purpose of this paper is to analyse of structures made in rock mass with multiple intersecting discrete discontinuities such as joint, fault, shear plane.

407

Abstract

Purpose

The purpose of this paper is to analyse of structures made in rock mass with multiple intersecting discrete discontinuities such as joint, fault, shear plane.

Design/methodology/approach

In this study, a numerical method is proposed for analyzing multiple intersecting joints with varying dip angles, spacing and roughness in eXtended Finite Element Method platform. A procedure is also outlined to treat excavated enhanced (jointed) elements for analysing the effect of excavation sequences.

Findings

The proposed method is compared with the existing interface element methods (Phase-2 model) by considering the stress and displacement distributions of a multiple intersecting jointed rock sample under uniaxial loading conditions. A circular tunnel in rock mass having intersecting joints is also analyzed for the distribution of mobilised friction angle of joints and results are compared with a derived analytical solution.

Research limitations/implications

Nucleation and propagation of cracks should be incorporated into the proposed framework in future studies.

Practical implications

The proposed method is a useful tool for rock mechanics and geotechnical engineering problems to analyse strength and deformability of jointed rock masses.

Originality/value

The paper enumerates concepts and detail implementation procedures of the proposed method in three-noded triangular elements. The intersection of joints is formulated in such a way that no additional (junction) enrichment is required in model. The method has been improved for inclusion of Dirichlet and Neumann boundary conditions to be applied in the enhanced part of a problem domain.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Marcos Arndt, Roberto Dalledone Machado and Adriano Scremin

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an…

Abstract

Purpose

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an adaptive generalized finite element method (GFEM). The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames.

Design/methodology/approach

The variational problem of free vibration is formulated and the main aspects of the adaptive GFEM are presented and discussed. The efficiency and convergence of the proposed method in vibration analysis of uniform and non-uniform Euler-Bernoulli beams are checked. The application of this technique in a frame is also presented.

Findings

The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames. The GFEM, which was conceived on the basis of the partition of unity method, allows the inclusion of enrichment functions that contain a priori knowledge about the fundamental solution of the governing differential equation. The proposed enrichment functions are dependent on the geometric and mechanical properties of the element. This approach converges very fast and is able to approximate the frequency related to any vibration mode.

Originality/value

The main contribution of the present study consisted in proposing an adaptive GFEM for vibration analysis of Euler-Bernoulli uniform and non-uniform beams and frames. The GFEM results were compared with those obtained by the h and p-versions of FEM and the c-version of the CEM. The adaptive GFEM has shown to be efficient in the vibration analysis of beams and has indicated that it can be applied even for a coarse discretization scheme in complex practical problems.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 December 2017

Michal Jan Smolnicki, Michal Ptak and Grzegorz Lesiuk

The combined numerical-experimental approach has been presented. The purpose of this paper is to determine the critical rupture load of the notched components based on the…

Abstract

Purpose

The combined numerical-experimental approach has been presented. The purpose of this paper is to determine the critical rupture load of the notched components based on the cohesive zone modeling (CZM).

Design/methodology/approach

The 42CrMo4 steel (in normalized state) state has been tested and modeled using an eXtended finite element method (xFEM) philosophy with the CZM approach. In order to validate the numerically obtained critical load forces the experimental verification was performed.

Findings

The critical loads were determined for various notch configurations. The numerical and experimental values were compared. Based on this, a good agreement between experimental and numerical data is achieved. The relative error does not exceed 7 percent.

Practical implications

The presented procedure and approach is effective and simple for engineering applications. It is worth to underline that the obtained critical load values for notched components require only the static tensile test results and implementation of the presented route in numerical FEM, xFEM environment.

Originality/value

The presented methodology is actual and still developed. The scientific and engineering value of the presented numerical procedure is high.

Details

International Journal of Structural Integrity, vol. 8 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 March 2015

Pawel Stapór

Of particular interest is the ability of the extended finite element method (XFEM) to capture transient solution and motion of phase boundaries without adaptive remeshing or…

Abstract

Purpose

Of particular interest is the ability of the extended finite element method (XFEM) to capture transient solution and motion of phase boundaries without adaptive remeshing or moving-mesh algorithms for a physically nonlinear phase change problem. The paper aims to discuss this issue.

Design/methodology/approach

The XFEM is applied to solve nonlinear transient problems with a phase change. Thermal conductivity and volumetric heat capacity are assumed to be dependent on temperature. The nonlinearities in the governing equations make it necessary to employ an effective iterative approach to solve the problem. The Newton-Raphson method is used and the incremental discrete XFEM equations are derived.

Findings

The robustness and utility of the method are demonstrated on several one-dimensional benchmark problems.

Originality/value

The novel procedure based on the XFEM is developed to solve physically nonlinear phase change problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

11 – 20 of over 8000