Search results

1 – 10 of over 13000
Open Access
Article
Publication date: 3 June 2021

Lulu Ge, Zheming Yang and Wen Ji

The evolution of crowd intelligence is a mainly concerns issue in the field of crowd science. It is a kind of group behavior that is superior to the individual’s ability to…

Abstract

Purpose

The evolution of crowd intelligence is a mainly concerns issue in the field of crowd science. It is a kind of group behavior that is superior to the individual’s ability to complete tasks through the cooperation of many agents. In this study, the evolution of crowd intelligence is studied through the clustering method and the particle swarm optimization (PSO) algorithm.

Design/methodology/approach

This study proposes a crowd evolution method based on intelligence level clustering. Based on clustering, this method uses the agents’ intelligence level as the metric to cluster agents. Then, the agents evolve within the cluster on the basis of the PSO algorithm.

Findings

Two main simulation experiments are designed for the proposed method. First, agents are classified based on their intelligence level. Then, when evolving the agents, two different evolution centers are set. Besides, this paper uses different numbers of clusters to conduct experiments.

Practical implications

The experimental results show that the proposed method can effectively improve the crowd intelligence level and the cooperation ability between agents.

Originality/value

This paper proposes a crowd evolution method based on intelligence level clustering, which is based on the clustering method and the PSO algorithm to analyze the evolution.

Details

International Journal of Crowd Science, vol. 5 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Article
Publication date: 29 July 2014

Xiaohua Yang, Chongli Di, Ying Mei, Yu-Qi Li and Jian-Qiang Li

The purpose of this paper is to reduce the computational burden and improve the precision of the parameter optimization in the convection-diffusion equation, a new algorithm, the…

Abstract

Purpose

The purpose of this paper is to reduce the computational burden and improve the precision of the parameter optimization in the convection-diffusion equation, a new algorithm, the refined gray-encoded evolution algorithm (RGEA), is proposed.

Design/methodology/approach

In the new algorithm, the differential evolution algorithm (DEA) is introduced to refine the solutions and to improve the search efficiency in the evolution process; the rapid cycle operation is also introduced to accelerate the convergence rate. The authors apply this algorithm to parameter optimization in convection-diffusion equations.

Findings

Two cases for parameter optimization in convection-diffusion equations are studied by using the new algorithm. The results indicate that the sum of absolute errors by the RGEA decreases from 74.14 to 99.29 percent and from 99.32 to 99.98 percent, respectively, compared to those by the gray-encoded genetic algorithm (GGA) and the DEA. And the RGEA has a faster convergent speed than does the GGA or DEA.

Research limitations/implications

A more complete convergence analysis of the method is under investigation. The authors will also explore the possibility of adapting the method to identify the initial condition and boundary condition in high-dimension convection-diffusion equations.

Practical implications

This paper will have an important impact on the applications of the parameter optimization in the field of environmental flow analysis.

Social implications

This paper will have an important significance for a sustainable social development.

Originality/value

The authors establish a new RGEA algorithm for parameter optimization in solving convection-diffusion equations. The application results make a valuable contribution to the parameter optimization in the field of environmental flow analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 July 2019

Francisco González, David Greiner, Vicente Mena, Ricardo M. Souto, Juan J. Santana and Juan J. Aznárez

Impedance data obtained by electrochemical impedance spectroscopy (EIS) are fitted to a relevant electrical equivalent circuit to evaluate parameters directly related to the…

Abstract

Purpose

Impedance data obtained by electrochemical impedance spectroscopy (EIS) are fitted to a relevant electrical equivalent circuit to evaluate parameters directly related to the resistance and the durability of metal–coating systems. The purpose of this study is to present a novel and more efficient computational strategy for the modelling of EIS measurements using the Differential Evolution paradigm.

Design/methodology/approach

An alternative method to non-linear regression algorithms for the analysis of measured data in terms of equivalent circuit parameters is provided by evolutionary algorithms, particularly the Differential Evolution (DE) algorithms (standard DE and a representative of the self-adaptive DE paradigm were used).

Findings

The results obtained with DE algorithms were compared with those yielding from commercial fitting software, achieving a more accurate solution, and a better parameter identification, in all the cases treated. Further, an enhanced fitting power for the modelling of metal–coating systems was obtained.

Originality/value

The great potential of the developed tool has been demonstrated in the analysis of the evolution of EIS spectra due to progressive degradation of metal–coating systems. Open codes of the different differential algorithms used are included, and also, examples tackled in the document are open. It allows the complete use, or improvement, of the developed tool by researchers.

Open Access
Article
Publication date: 3 August 2020

Rajashree Dash, Rasmita Rautray and Rasmita Dash

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its…

1195

Abstract

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its distinguishing features such as generalization ability, robustness and strong ability to tackle nonlinear problems, it appears to be more popular in financial time series modeling and prediction. In this paper, a Pi-Sigma Neural Network is designed for foretelling the future currency exchange rates in different prediction horizon. The unrevealed parameters of the network are interpreted by a hybrid learning algorithm termed as Shuffled Differential Evolution (SDE). The main motivation of this study is to integrate the partitioning and random shuffling scheme of Shuffled Frog Leaping algorithm with evolutionary steps of a Differential Evolution technique to obtain an optimal solution with an accelerated convergence rate. The efficiency of the proposed predictor model is actualized by predicting the exchange rate price of a US dollar against Swiss France (CHF) and Japanese Yen (JPY) accumulated within the same period of time.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 26 January 2023

Moritz Benninger, Marcus Liebschner and Christian Kreischer

Monitoring and diagnosis of fault cases for squirrel cage induction motors can be implemented using the multiple coupled circuit model. However, the identification of the…

Abstract

Purpose

Monitoring and diagnosis of fault cases for squirrel cage induction motors can be implemented using the multiple coupled circuit model. However, the identification of the associated model parameters for a specific machine is problematic. Up to now, the main options are measurement and test procedures or the use of finite element method analyses. However, these approaches are very costly and not suitable for use in an industrial application. The purpose of this paper is a practical parameter identification based on optimization methods and a comparison of different algorithms for this task.

Design/methodology/approach

Population-based metaheuristics are used to determine the parameters for the multiple coupled circuit model. For this purpose, a search space for the required parameters is defined without an elaborate analytical approach. Subsequently, a genetic algorithm, the differential evolution algorithm and particle swarm optimization are tested and compared. The algorithms use the weighted mean squared error (MSE) between the real measured data of stator currents as well as speed and the simulation results of the model as a fitness function.

Findings

The results of the parameter identification show that the applied methodology generally works and all three optimization algorithms fulfill the task. The differential evolution algorithm performs best, with a weighted MSE of 2.62, the lowest error after 1,000 simulations. In addition, this algorithm achieves the lowest overall error of all algorithms after only 740 simulations. The determined parameters do not completely match the parameters of the real machine, but still result in a very good reproduction of the dynamic behavior of the induction motor with squirrel cage.

Originality/value

The value of the presented method lies in the application of condition-based maintenance of electric drives in the industry, which is performed based on the multiple coupled circuit model. With a parameterized model, various healthy as well as faulty states can be calculated and thus, in the future, monitoring and diagnosis of faults of the respective motor can be performed. Essential for this, however, are the parameters adapted to the respective machine. With the described method, an automated parameter identification can be realized without great effort as a basis for an intelligent and condition-oriented maintenance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2003

Darko Grundler and Tomislav Rolich

Fabric design has always been a matter of inspiration, depending mostly upon man's ingenuity and creativity. The authors suggest that creation of fabric patterns using evolution

555

Abstract

Fabric design has always been a matter of inspiration, depending mostly upon man's ingenuity and creativity. The authors suggest that creation of fabric patterns using evolution algorithms, which can not only help in improving design created by man, but also make the procedure semi‐automatic, meaning much less dependent upon the designer himself/herself. Evolution algorithm based software offers a wide range of fabric patterns and is also able to create new ones based on the user's choice. The procedure can also be of considerable help to professional designers, as it can offer patterns they would not or could not create themselves. The system described is inexpensive and can be used on IBM compatible personal computers. It is user‐friendly and can be implemented with no previous preparation on the part of the user. The results of preliminary investigations suggest a practical applicability of the software.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 24 May 2013

Jyri Leskinen, Hong Wang and Jacques Périaux

The purpose of this paper is to compare the efficiency of four different algorithmic parallelization methods for inverse shape design flow problems.

Abstract

Purpose

The purpose of this paper is to compare the efficiency of four different algorithmic parallelization methods for inverse shape design flow problems.

Design/methodology/approach

The included algorithms are: a parallelized differential evolution algorithm; island‐model differential evolution with multiple subpopulations; Nash differential evolution with geometry decomposition using competitive Nash games; and the new Global Nash Game Coalition Algorithm (GNGCA) which combines domain and geometry decomposition into a “distributed one‐shot” method. The methods are compared using selected academic reconstruction problems using a different number of simultaneous processes.

Findings

The results demonstrate that the geometry decomposition approach can be used to improve algorithmic convergence. Additional improvements were achieved using the novel distributed one‐shot method.

Originality/value

This paper is a part of series of articles involving the GNGCA method. Further tests implemented for more complex problems are needed to study the efficiency of the approaches in more realistic cases.

Article
Publication date: 7 November 2023

Zhu Wang, Hongtao Hu and Tianyu Liu

Driven by sustainable production, mobile robots are introduced as a new clean-energy material handling tool for mixed-model assembly lines (MMALs), which reduces energy…

Abstract

Purpose

Driven by sustainable production, mobile robots are introduced as a new clean-energy material handling tool for mixed-model assembly lines (MMALs), which reduces energy consumption and lineside inventory of workstations (LSI). Nevertheless, the previous part feeding scheduling method was designed for conventional material handling tools without considering the flexible spatial layout of the robotic mobile fulfillment system (RMFS). To fill this gap, this paper focuses on a greening mobile robot part feeding scheduling problem with Just-In-Time (JIT) considerations, where the layout and number of pods can be adjusted.

Design/methodology/approach

A novel hybrid-load pod (HL-pod) and mobile robot are proposed to carry out part feeding tasks between material supermarkets and assembly lines. A bi-objective mixed-integer programming model is formulated to minimize both total energy consumption and LSI, aligning with environmental and sustainable JIT goals. Due to the NP-hard nature of the proposed problem, a chaotic differential evolution algorithm for multi-objective optimization based on iterated local search (CDEMIL) algorithm is presented. The effectiveness of the proposed algorithm is verified by dealing with the HL-pod-based greening part feeding scheduling problem in different problem scales and compared to two benchmark algorithms. Managerial insights analyses are conducted to implement the HL-pod strategy.

Findings

The CDEMIL algorithm's ability to produce Pareto fronts for different problem scales confirms its effectiveness and feasibility. Computational results show that the proposed algorithm outperforms the other two compared algorithms regarding solution quality and convergence speed. Additionally, the results indicate that the HL-pod performs better than adopting a single type of pod.

Originality/value

This study proposes an innovative solution to the scheduling problem for efficient JIT part feeding using RMFS and HL-pods in automobile MMALs. It considers both the layout and number of pods, ensuring a sustainable and environmental-friendly approach to production.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2013

Wenping Ma, Feifei Ti, Congling Li and Licheng Jiao

The purpose of this paper is to present a Differential Immune Clone Clustering Algorithm (DICCA) to solve image segmentation.

Abstract

Purpose

The purpose of this paper is to present a Differential Immune Clone Clustering Algorithm (DICCA) to solve image segmentation.

Design/methodology/approach

DICCA combines immune clone selection and differential evolution, and two populations are used in the evolutionary process. Clone reproduction and selection, differential mutation, crossover and selection are adopted to evolve two populations, which can increase population diversity and avoid local optimum. After extracting the texture features of an image and encoding them with real numbers, DICCA is used to partition these features, and the final segmentation result is obtained.

Findings

This approach is applied to segment all sorts of images into homogeneous regions, including artificial synthetic texture images, natural images and remote sensing images, and the experimental results show the effectiveness of the proposed algorithm.

Originality/value

The method presented in this paper represents a new approach to solving clustering problems. The novel method applies the idea two populations are used in the evolutionary process. The proposed clustering algorithm is shown to be effective in solving image segmentation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 September 2021

Manik Chandra and Rajdeep Niyogi

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service…

Abstract

Purpose

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service environment (web service repository) while maintaining Quality-of-Service (QoS), is referred to as web service selection (WSS). With the explosive growth of internet services, managing and selecting the proper services (or say web service) has become a pertinent research issue.

Design/methodology/approach

In this paper, to address WSS problem, the authors propose a new modified fruit fly optimization approach, called orthogonal array-based learning in fruit fly optimizer (OL-FOA). In OL-FOA, they adopt a chaotic map to initialize the population; they add the adaptive DE/best/2mutation operator to improve the exploration capability of the fruit fly approach; and finally, to improve the efficiency of the search process (by reducing the search space), the authors use the orthogonal learning mechanism.

Findings

To test the efficiency of the proposed approach, a test suite of 2500 web services is chosen from the public repository. To establish the competitiveness of the proposed approach, it compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC). The empirical results show that the proposed approach outperforms its counterparts in terms of response time, latency, availability and reliability.

Originality/value

In this paper, the authors have developed a population-based novel approach (OL-FOA) for the QoS aware web services selection (WSS). To justify the results, the authors compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC) over the four QoS parameter response time, latency, availability and reliability. The authors found that the approach outperforms overall competitive approaches. To satisfy all objective simultaneously, the authors would like to extend this approach in the frame of multi-objective WSS optimization problem. Further, this is declared that this paper is not submitted to any other journal or under review.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 13000