Search results

1 – 2 of 2
Article
Publication date: 12 July 2021

Maricruz Henkel Carrillo, Geuntak Lee, Charles Maniere and Eugene A. Olevsky

The purpose of this work is to introduce a novel approach of using additive manufacturing (AM) to produce dense complex ceramic and metallic parts. Powder 3D printing has been…

Abstract

Purpose

The purpose of this work is to introduce a novel approach of using additive manufacturing (AM) to produce dense complex ceramic and metallic parts. Powder 3D printing has been gaining popularity due to its ease of use and versatility. However, powder-based methods such as Selective Laser Melting (SLM) and Sintering (SLS), utilizes high power lasers which generate thermal shock conditions in metals and are not ideal for ceramics due to their high melting temperature. Indirect additive manufacturing methods have been explored to address the above issues but have proven to be wasteful and time-consuming.

Design/methodology/approach

In this work, a novel approach of producing high density net-shaped prototypes using subtractive sintering (SS) and solvent jetting is developed. AM combined with SS (AM-SS) is a process that includes five simple steps. AM-SS can produce repeatable and reliable results as has been shown in this work.

Findings

As a proof-of-concept, a zirconia dental crown with a high density of 97% is fabricated using this approach. Microstructure and properties of the fabricated components are analyzed.

Originality/value

A major advantage of this method is the ability to efficiently fabricate high density parts using either metal powder and more importantly, ceramic powder which is traditionally difficult to densify using AM. Additionally, any powder particle size (including nano) and shape can be used which is not the case for traditional powder-based 3D printing.

Article
Publication date: 12 January 2021

Ifeanyichukwu Donald Olumor, Lee Geuntak and Eugene Olevsky

The purpose of this study is to investigate the effect of two unique processing routes (solvent jetting (SJ) and binder jetting (BJ)), on the green density of printed stainless…

Abstract

Purpose

The purpose of this study is to investigate the effect of two unique processing routes (solvent jetting (SJ) and binder jetting (BJ)), on the green density of printed stainless steel 316L (SS316L) and Nickel (Ni) powders.

Design/methodology/approach

In the SJ processing route, a solvent is jetted unto the powder/binder mixture to selectively activate the binder, layer by layer. In the BJ processing route, a solution of the binder mixture is jetted onto the powder bed to selectively bind powder particles. The effects of printing parameters such as layer height, roller speed, shaker speed and nozzle temperature on the green density of printed components are investigated and compared for both processing routes.

Findings

Results show that layer height and nozzle temperature affect the relative density of the printed compact for both processing routes. Slightly higher relative densities were achieved via the SJ route, with the overall highest relative density being 42.7% at 100 µm layer height and 70% nozzle temperature for the SS316L components and 43.7% at 150 µm layer height and 90% nozzle temperature for the Ni components, respectively. Results also show an increase in the final sintered relative density with an increase in green (printed) relative density of the solvent jetted SS316L components, with the highest relative density being 87.2%.

Originality/value

The paper studies the influence of printing parameters on the green density of printed SS316L and Ni samples in an unprecedented effort to provide a comparative understanding of the process-property relationships in BJ and SJ of SS316L and Ni components to the additive manufacturing research community.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2