Search results

1 – 3 of 3
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2092

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 28 February 2023

Boshra Ahmed Halo, Rashid Al-Yahyai, Abdullah Al-Sadi and Asma Al-Sibani

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and…

Abstract

Purpose

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and Talaromyces variabilis, in conferring drought tolerance in tomato plants.

Design/methodology/approach

Preserved endophytic fungi from a Rhazya stricta desert plant were adopted to obtain the required fungal treatment; tomatoes received fungal treatments directly in plastic trays and subsequently in pots. Drought was applied using 15% of PEG-6000 at two stages: flowering and fruiting. The following parameters were measured: pollen sterility, growth characteristics, morphological analysis and biochemical analysis, including proline, gibberellic acid (GA3) and chlorophyll measurements; thus, the data were analyzed statistically using SPSS software.

Findings

All applied endophytes significantly promoted pollen viability and tomato yield under stressed and nonstressed conditions. Interestingly, these endophytes significantly enhanced the number of trichomes under drought stress and promoted tomato fruit quality. The colonized tomato plants accumulated a high proline level under drought stress but lower than un-inoculated stressed plants. Also, a significant rise in growth characteristics was observed by A. fumigatus and A. terreus under normal conditions. Moreover, both raised GA3 levels under drought-stressed and nonstressed conditions. Also these two endophytes enhanced chlorophyll and carotenoid contents under drought stress. Fruit characteristics were enhanced by nonstressed T. variabilis and stressed A. fumigatus.

Originality/value

The present endophytic fungi provide impressive benefits to their host in normal and drought-stressed conditions. Consequently, they represent valuable sources as sustainable and environmentally friendly alternatives to mitigate drought stress.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Access

Only content I have access to

Year

Last 12 months (3)

Content type

1 – 3 of 3