Search results

1 – 10 of 65
Article
Publication date: 2 November 2018

Lazhar Roubache, Kamel Boughrara, Frédéric Dubas and Rachid Ibtiouen

The most significant point to be introduced in the subdomain technique (i.e. based on the formal resolution of Maxwell’s equations applied in subdomain) is the local saturation…

Abstract

Purpose

The most significant point to be introduced in the subdomain technique (i.e. based on the formal resolution of Maxwell’s equations applied in subdomain) is the local saturation effect. This paper aims to present a novel contribution on the improvement in the two-dimensional (2-D) technique in polar coordinates by focusing on the local saturation.

Design/methodology/approach

The rotor and stator regions are divided into elementary subdomains (E-SDs) which are characterized by general solutions to the first harmonic of magnetostatic Maxwell equations. These E-SDs are connected in the two directions (i.e. r- and θ-edges). Newton–Raphson (NR) iterative algorithm is used for nonlinear magnetic field analysis.

Findings

The proposed model is relevant for different types of rotating electrical machines; as an example, the semi-analytical model has been implemented for spoke-type permanent-magnet (PM) machines (STPMMs). The magnetic field calculations have been performed for nonlinear B(H) curve and compared to nonlinear finite element method (FEM) predictions. The semi-analytic results are in good agreement with those obtained numerically, considering both amplitude and waveform.

Originality/value

A new model for full prediction of magnetic field in the rotating electrical machines with the local saturation effect is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 January 2024

Lazhar Roubache, Kamel Boughrara, Frédéric Dubas, Brahim Ladghem Chikouche and Rachid Ibtiouen

This paper aims to propose a semianalytical model of a squirrel-cage induction machine (SCIM), considering local magnetic saturation and eddy-currents induced in the rotor bars.

Abstract

Purpose

This paper aims to propose a semianalytical model of a squirrel-cage induction machine (SCIM), considering local magnetic saturation and eddy-currents induced in the rotor bars.

Design/methodology/approach

The regions of the rotor and stator are divided into elementary subdomains (E-SDs) characterized by general solutions at the first harmonic of the magneto-harmonic Maxwell’s equations. These E-SDs are connected in both directions (i.e., along the r- and θ-edges).

Findings

The calculation of the magnetic field has been validated for various values of slip and iron permeability. All electromagnetic quantities were compared with those obtained using a two-dimensional finite-element method. The semianalytical results are satisfactory compared with the numerical results, considering both the amplitude and waveform.

Originality/value

Expansion of the recent analytical model (E-SD technique) for the full prediction of the magnetic field in SCIMs, considering the local saturation effect and the eddy-currents induced in the rotor bars.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 June 2021

Brahim Ladghem Chikouche, Kamel Boughrara, Frédéric Dubas and Rachid Ibtiouen

The purpose of this paper is to propose a two-dimensional (2-D) hybrid analytical model (HAM) in polar coordinates, combining a 2-D exact subdomain (SD) technique and magnetic…

Abstract

Purpose

The purpose of this paper is to propose a two-dimensional (2-D) hybrid analytical model (HAM) in polar coordinates, combining a 2-D exact subdomain (SD) technique and magnetic equivalent circuit (MEC), for the magnetic field calculation in electrical machines at no-load and on-load conditions.

Design/methodology/approach

In this paper, the proposed technique is applied to dual-rotor permanent magnet (PM) synchronous machines. The magnetic field is computed by coupling an exact analytical model (AM), based on the formal resolution of Maxwell’s equations applied in subdomains, in regions at unitary relative permeability with a MEC, using a nodal-mesh formulation (i.e. Kirchhoff's current law), in ferromagnetic regions. The AM and MEC are connected in both directions (i.e. r- and theta-edges) of the (non-)periodicity direction (i.e. in the interface between teeth regions and all its adjacent regions as slots and/or air-gap). To provide accurate solutions, the current density distribution in slot regions is modeled by using Maxwell’s equations instead to MEC and characterized by an equivalent magnetomotive force (MMF) located in the slots, teeth and yoke.

Findings

It is found that whatever the iron core relative permeability, the developed HAM gives accurate results for both no-load and on-load conditions. Finite element analysis demonstrates the excellent results of the developed technique.

Originality/value

The main objective of this paper is to achieve a direct coupling between the AM and MEC in both directions (i.e. r- and theta-edges). The current density distribution is modeled by using Maxwell’s equations instead to MEC and characterized by an MMF.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 November 2020

Ali Jabbari and Frédéric Dubas

In semi-analytical modeling of spoke-type permanent-magnet (PM) machines (STPMM), the saturation effect is usually neglected (i.e. iron parts are considered to be infinitely…

Abstract

Purpose

In semi-analytical modeling of spoke-type permanent-magnet (PM) machines (STPMM), the saturation effect is usually neglected (i.e. iron parts are considered to be infinitely permeable) and the PM magnetization is assumed tangential (i.e. magnetization pattern is considered to be tangential-parallel). This paper aims to present an improved two-dimensional (2D) subdomain technique for STPMM with the PM magnetization orientation in quasi-Cartesian coordinates by using hyperbolic functions considering non-homogeneous Neumann boundary conditions (BCs) in non-periodic regions and by applying the interfaces conditions (ICs) in both directions (i.e. t- and θ edges ICs).

Design/methodology/approach

The polar coordinate system is transformed into a quasi-Cartesian coordinate system. The rotor and stator regions are divided into primary subdomains, and a partial differential equation (PDE) is assigned to each subdomain. In the PM region, the magnetization orientation is considered in the equations. By applying BCs, the general solution of the equations is determined, and by applying the ICs, the corresponding coefficients are determined.

Findings

Using the proposed coordinate system, the general solution of PDEs and their coefficients can mathematically be simplified. The magnetic field and non-intrinsic unbalanced magnetic forces (UMF) calculations have been performed for three different values of iron core relative permeability (200, 800 and ∞), as well as different magnetization orientation values (135 and 80 degrees). The semi-analytical model based on the subdomain technique is compared with those obtained by the 2D finite-element analysis (FEA). Results disclose that the PM magnetization angle can affect directly the performance characteristics of the STPMM.

Originality/value

A new model for prediction of electromagnetic performances in the STPMM takes into account magnetization direction, and soft magnetic material relative permeability in a pseudo-Cartesian coordinate system by using subdomain technique is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2021

Minchen Zhu, Lijian Wu, Dong Wang, Youtong Fang and Ping Tan

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances…

Abstract

Purpose

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances and unbalanced magnetic force) of dual-stator consequent-pole permanent magnet (DSCPPM) machines using subdomain model accounting for tooth-tip effect. The finite element (FE) results are presented to validate the accuracy of this subdomain model.

Design/methodology/approach

During the preliminary design and optimization of DSCPPM machines, FE method requires numerous computational resources and can be especially time-consuming. Thus, a subdomain model considering the tooth-tip effect is presented in this paper. The whole field domain is divided into four different types of sub-regions, where the analytical solutions of vector potential in each sub-region can be rapidly calculated. The proposed subdomain model can accurately predict the on-load flux density distributions and electromagnetic performance of DSCPPM machines, which is verified by FE method.

Findings

The radial and tangential components of flux densities in each sub-region of DSCPPM machine can be obtained according to the vector potential distribution, which is calculated based on the boundary and interface conditions using variable separation approach. The tooth-tip effect is investigated as well. Moreover, the phase-induced voltage, winding inductances, electromagnetic torque and X-axis/Y-axis components of unbalanced magnetic forces are calculated and compared by FE analysis, where excellent agreements are consistently exhibited.

Originality/value

The on-load field distributions and electromagnetic performance of DSCPPM machines are analytically investigated using subdomain method, which can be beneficial in the process of initial design and optimization for such DSCPPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 August 2021

Brahim Ladghem Chikouche, Kamel Boughrara, Frédéric Dubas and Rachid Ibtiouen

This paper aims to propose an improved two-dimensional hybrid analytical method (HAM) in Cartesian coordinates, based on the exact subdomain technique and the magnetic equivalent…

Abstract

Purpose

This paper aims to propose an improved two-dimensional hybrid analytical method (HAM) in Cartesian coordinates, based on the exact subdomain technique and the magnetic equivalent circuit (MEC).

Design/methodology/approach

The magnetic field solution is obtained by coupling an exact analytical model (AM), calculated in all regions having relative permeability equal to unity, with a MEC, using a nodal-mesh formulation (i.e. Kirchhoff’s current law) in ferromagnetic regions. The AM and MEC are connected in both axes (x, y) of the (non-)periodicity direction (i.e. in the interface between the tooth regions and all its adjacent regions as slots and/or air-gap). To provide accuracy solutions, the current density distribution in slot regions is modeled by using Maxwell’s equations instead of the MEC characterized by an equivalent magnetomotive force (MMF) located in slots, teeth and yokes.

Findings

It is found that whatever the iron core relative permeability, the developed HAM gives accurate results for no- and on-load conditions. The finite-element analysis demonstrates excellent results of the developed technique.

Originality/value

The main objective of this paper is to make a direct coupling between the AM and MEC in both directions (i.e. x- and y-edges). The current density distribution is modeled by using Maxwell’s equations instead of the MEC and characterized by an MMF.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1996

I. Raspo, J. Ouazzani and R. Peyret

This paper presents a spectral multidomain method for solving theNavier‐Stokes equations in the vorticity‐stream function formulation. Thealgorithm is based on an extensive use of…

Abstract

This paper presents a spectral multidomain method for solving the Navier‐Stokes equations in the vorticity‐stream function formulation. The algorithm is based on an extensive use of the influence matrix technique and so leads to a direct method without any iterative process. Numerical results concerning the Czochralski melt configuration are reported and compared with spectral monodomain solutions to show the advantage of the domain decomposition for such a problem which solution presents a singular behaviour.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1997

Ioannis St Doltsinis

Addresses problems in mechanics and physics involving two or more coupled variables of different nature, or a number of distinct domains which interact. For these kinds of…

Abstract

Addresses problems in mechanics and physics involving two or more coupled variables of different nature, or a number of distinct domains which interact. For these kinds of problems, considers numerical solution by the coupling of operators appertaining to the individual participating phenomena, or defined in the domains. Reviews the co‐operation of distinct discretized operators in connection with the integration of temporal evolution processes, and the iterative treatment of stationary equations of state. The specification of subtasks complies with the demand for an independent treatment on different processing units arising in parallel computation. Physical subtasks refer to problems of different field variables interacting on the continuum level; their number is usually small. Fine granularity may be achieved by separating the problem region into subdomains which communicate via the boundaries. In multiphysics simulations operators are preferably combined such that subdomains are processed in parallel on different units, while physical phenomena are processed sequentially in the subdomain.

Details

Engineering Computations, vol. 14 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 December 2021

Marsha E. Modeste, Chi Nguyen, Rhoda Nanre Nafziger and Jonathan Hermansen

The purpose of this study is to examine the nature of socially distributed leadership in Denmark and the USA, specifically teacher and staff leadership practices distributed in…

Abstract

Purpose

The purpose of this study is to examine the nature of socially distributed leadership in Denmark and the USA, specifically teacher and staff leadership practices distributed in schools.

Design/methodology/approach

This study used a confirmatory factor analysis and a second-order factor analysis to examine elementary USA and 0–9 Danish school educators’ responses to the Comprehensive Assessment of Leadership for Learning.

Findings

Findings from this analysis of leadership practice demonstrate (1) different approaches to teacher and staff leadership in Denmark and the USA; (2) the importance of a collaborative approach to developing and maintaining professional learning communities in schools in both contexts; and (3) different patterns of leadership practice that broadly reflect the local structure and approach to school leadership while responding to external policy demands.

Originality/value

Drawing on the globalization scholarship, which acknowledges the connection between global policy development and local spaces of implementation, this comparative international study allowed us to examine how policy ideas are parlayed into practice through the use of a shared assessment of leadership practice. The results of this study suggest that while the work of teacher and staff leadership is important and something that educators in Denmark and the USA are engaging in to advance the overall instructional mission of their schools, the approaches taken in each context are different and reflect a local-level negotiation between contextual cultural norms and policy expectations.

Details

Journal of Educational Administration, vol. 60 no. 2
Type: Research Article
ISSN: 0957-8234

Keywords

Article
Publication date: 19 June 2007

Saku Suuriniemi, Jari Kangas and Lauri Kettunen

The paper addresses various ways of driving a magneto‐quasi‐static coupled field‐circuit problems, starting with the underlying assumptions of this problem class. It focuses on…

Abstract

Purpose

The paper addresses various ways of driving a magneto‐quasi‐static coupled field‐circuit problems, starting with the underlying assumptions of this problem class. It focuses on problem consistency, supporting both conceptual understanding, and translation into software.

Design/methodology/approach

The paper proceeds from a precisely defined problem class and analyze its consistency with homology theory.

Findings

Precise notion of “driving a problem,” extensive discussion of modeling assumptions and decisions, and classification and consistency analysis of various driving methods.

Practical implications

Helps modelers systematically pose consistent coupled field‐circuit problems. The computation of homology groups can be automated to help pose problems and detect consistency problems.

Originality/value

Starting from the basic underlying assumptions, the paper summarizes logically the application of homology to consistency analysis. The style is tutorial for modelers, with numerous particular cases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 65