Search results

1 – 10 of 39
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 November 2023

Brajesh Mishra and Avanish Kumar

Globally, the governance has shifted from positivist to the regulatory-centric approach, necessitating accurate contouring of regulatory governance framework. The study proposes a…

Abstract

Purpose

Globally, the governance has shifted from positivist to the regulatory-centric approach, necessitating accurate contouring of regulatory governance framework. The study proposes a novel approach to unravel the regulatory governance framework in the context of the Indian electronics industry – extendable to other sectors in India and other emerging economies.

Design/methodology/approach

The research objective has been operationalized through document analysis and thematic analysis of semi-structured interview transcripts in three steps: (1) arrive at parameters of the regulatory governance framework, (2) identify instruments against each parameter and (3) characterize parameters in terms of dominant instruments and their underlying modalities. The authors have adopted a set of 6 Cs modalities (control, communications, competition, consensus, code and collaboration) and regulatory space theory to analyze existing modalities mix in the dominant instruments.

Findings

In summary, the study has (1) identified eight macro and twenty micro regulatory governance parameters, (2) mapped regulatory governance parameters with instruments and institutions (3) revealed the top two dominant modalities for each regulatory governance parameter.

Practical implications

The existing modality characteristics of regulatory governance parameters can be used by manufacturers, investors and other stakeholders to make a realistic assessment of regulatory governance and reduce regulatory risk and regulatory burden.

Originality/value

The multidimensional use of parameters, instruments and modalities broadens the understanding of the existing regulatory governance framework and may assist the regulators in optimizing it to meet market requirements.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 10 October 2023

Xiao He, Lijuan Huang, Meizhen Xiao, Chengyong Yu, En Li and Weiheng Shao

The purpose of this paper is to illustrate the new technical demands and reliability challenges to printed circuit board (PCB) designs, materials and processes when the…

Abstract

Purpose

The purpose of this paper is to illustrate the new technical demands and reliability challenges to printed circuit board (PCB) designs, materials and processes when the transmission frequency increases from Sub-6 GHz in previous generations to millimeter (mm) wave in fifth-generation (5G) communication technology.

Design/methodology/approach

The approach involves theoretical analysis and actual case study by various characterization techniques, such as a stereo microscope, metallographic microscope, scanning electron microscope, energy dispersive spectroscopy, focused ion beam, high-frequency structure simulator, stripline resonator and mechanical test.

Findings

To meet PCB signal integrity demands in mm-wave frequency bands, the improving proposals on copper profile, resin system, reinforcement fabric, filler, electromagnetic interference-reducing design, transmission line as well as via layout, surface treatment, drilling, desmear, laminating and electroplating were discussed. And the failure causes and effects of typical reliability issues, including complex permittivity fluctuation at different frequencies or environments, weakening of peel strength, conductive anodic filament, crack on microvias, the effect of solder joint void on signal transmission performance and soldering anomalies at ball grid array location on high-speed PCBs, were demonstrated.

Originality/value

The PCB reliability problem is the leading factor to cause failures of PCB assemblies concluded from statistical results on the failure cases sent to our laboratory. The PCB reliability level is very essential to guarantee the reliability of the entire equipment. In this paper, the summarized technical demands and reliability issues that are rarely reported in existing articles were discussed systematically with new perspectives, which will be very critical to identify potential reliability risks for PCB in 5G mm-wave applications and implement targeted improvements.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 January 2024

Arne Roar Nygård and Sokratis K. Katsikas

This paper aims to discuss the ethical aspects of hardware reverse engineering (HRE) and propose an ethical framework for HRE when used to mitigate cyber risks of the digital…

Abstract

Purpose

This paper aims to discuss the ethical aspects of hardware reverse engineering (HRE) and propose an ethical framework for HRE when used to mitigate cyber risks of the digital supply chain of critical infrastructure operators.

Design/methodology/approach

A thorough review and analysis of existing relevant literature was performed to establish the current state of knowledge in the field. Ethical frameworks proposed for other areas/disciplines and identified pertinent ethical principles have been used to inform the proposed framework’s development.

Findings

The proposed framework provides actionable guidance to security professionals engaged with such activities to support them in assessing whether an HRE project conforms to ethical principles. Recommendations on action needed to complement the framework are also proposed. According to the proposed framework, reverse engineering is neither unethical nor illegal if performed honourably. Collaboration with vendors and suppliers at an industry-wide level is critical for appropriately endorsing the proposed framework.

Originality/value

To the best of the authors’ knowledge, no ethical framework currently guides cybersecurity research, far less of cybersecurity vulnerability research and reverse engineering.

Details

Information & Computer Security, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 15 December 2023

Tejendra Singh Gaur, Vinod Yadav, Sameer Mittal and Milind Kumar Sharma

Waste generated from electrical and electronic equipment, collectively known as E-waste, remains a persistent environmental, economic and social problem. Sustainable E-waste…

Abstract

Purpose

Waste generated from electrical and electronic equipment, collectively known as E-waste, remains a persistent environmental, economic and social problem. Sustainable E-waste management (EWM) has numerous benefits, such as preventing electronic waste from entering landfills, reducing the need for virgin materials by recovering valuable materials from recycling and lowering greenhouse gas emissions. Circular economy (CE) practices are considered the initial steps toward sustainable EWM, but some hurdles have been reported in the adoption of these practices. Therefore, the current study aims to identify the common CE practices, sustainability of the EWM process and the challenges in EWM, and to develop a conceptual framework for effective EWM.

Design/methodology/approach

Very few studies have proposed frameworks that acknowledge the challenges and CE practices of EWM. To fill this gap, a systematic literature review (SLR) was performed, and 169 research articles were explored.

Findings

A total of seven challenges in the adoption of effective EWM were identified: rules and policy, infrastructure, consumer behaviour, informal sectors, community culture, technology and economy. Eight common CE practices were also found for effective EWM: reuse, recycle, remanufacturing, refurbishment, repair, reduce, recover and repurpose.

Originality/value

A conceptual framework guiding sustainable EWM was proposed, which includes solutions for the identified challenges, and CE practices with sustainable benefits.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 28 March 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually…

Abstract

Purpose

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually done using complex inductors or adaptable resonant tanks, which leads to costly and constrained implementations. This paper aims to propose a multi-level, versatile power supply able to adapt the output to the required induction heating process.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The methodology followed includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and laboratory tests after building a 10-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 1 kVpp and 100 A at 250 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced tests and processes on induction heating system. The proposed system allows for multifrequency generation using a single inductor and converter, or advanced tests for inductive and capacitive components used on induction heating systems. Unlike previous multifrequency proposals, the proposed generator enables a significantly improved versatility in terms of operational frequency and amplitude in a single converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 24 November 2023

Ornella Tanga Tambwe, Clinton Ohis Aigbavboa and Opeoluwa Akinradewo

Data represents a critical resource that enables construction companies’ success; thus, its management is very important. The purpose of this study is to assess the benefits of…

Abstract

Purpose

Data represents a critical resource that enables construction companies’ success; thus, its management is very important. The purpose of this study is to assess the benefits of construction data risks management (DRM) in the construction industry (CI).

Design/methodology/approach

This study adopted a quantitative method and collected data from various South African construction professionals with the aid of an e-questionnaire. These professionals involve electrical engineers, quantity surveyors, architects and mechanical, as well as civil engineers involved under a firm, or organisation within the province of Gauteng, South Africa. Standard deviation, mean item score, non-parametric Kruskal–Wallis H test and exploratory factor analysis were used to analyse the retrieved data.

Findings

The findings revealed that DRM enhances project and company data availability, promotes confidentiality and enhances integrity, which are the primary benefits of DRM that enable the success of project delivery.

Research limitations/implications

The research was carried out only in the province of Gauteng due to COVID-19 travel limitations.

Practical implications

The construction companies will have their data permanently in their possession and no interruption will be seen due to data unavailability, which, in turn, will allow long-term and overall pleasant project outcomes.

Originality/value

This study seeks to address the benefits of DRM in the CI to give additional knowledge on risk management within the built environment to promote success in every project.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 39