Search results

1 – 10 of 205
Article
Publication date: 31 May 2024

Chien-Shan Han, Yu-Ming Hsu and Han-Jen Hsu

This study aims to explore the determinants influencing consumer purchase intentions towards electric vehicles (EVs) within the Asian market. It specifically examines how…

Abstract

Purpose

This study aims to explore the determinants influencing consumer purchase intentions towards electric vehicles (EVs) within the Asian market. It specifically examines how perceived value and perceived risk interact with the moderating effects of environmental, policy, and social factors to shape consumer behaviors towards EV adoption. The purpose is to delineate the intricate mechanisms driving consumer intentions in the context of sustainable mobility solutions.

Design/methodology/approach

Adopting a quantitative research design, this investigation collected data via a survey targeting consumers across various Asian countries. The study utilized Structural Equation Modeling (SEM) to analyze the responses, enabling a robust examination of the relationships between perceived value, perceived risk, and the potential moderating roles of external factors on consumer purchase intentions towards EVs.

Findings

The analysis revealed that both perceived value and perceived risk significantly influence consumers' intentions to purchase EVs. It was also found that environmental factors effectively moderate the relationship between perceived risk and purchase intentions, while social factors moderate the relationship between perceived risk and purchase intentions, highlighting the complex influence of external elements on consumer decisions. Contrarily, policy factors did not exhibit a significant moderating impact on the relationships examined.

Originality/value

This research enriches the domain of sustainable technology adoption by providing nuanced insights into the factors driving consumer intentions towards EVs in the Asian context. It underscores the critical roles of perceived value and risk, along with the distinct moderating effects of environmental and social factors, offering strategic implications for stakeholders within the EV ecosystem. The study's findings contribute to the broader discourse on consumer behavior in green technology adoption, laying groundwork for future investigations across diverse settings.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 13 September 2024

Fuchun Jia, Xianghuan Liu and Yao Fu

The purposes of this paper are optimization of high speed reducer in electric vehicles based on the analysis of lubrication and verification of simulation accuracy and…

Abstract

Purpose

The purposes of this paper are optimization of high speed reducer in electric vehicles based on the analysis of lubrication and verification of simulation accuracy and optimization results.

Design/methodology/approach

The traditional CFD method presents poor applicability to complex geometric problems due to grid deformity. Therefore, moving particle semi-implicit (MPS) method is applied in this study to simulate lubrication of the reducer and analyze the influence of input speed and lubrication system design on the distribution. According to the results, the reducer is optimized. Meanwhile, the experiments for lubrication and churning power loss is carried out to verify the accuracy of simulation and optimization effects.

Findings

The flow field of lubricant inside the reducer is obtained. The lubrication system of reducer needs to be improved. Simulation and experiment show that the optimization is sufficient and efficient.

Originality/value

According to the simulation of lubrication, the reducer is optimized. The lubrication experimental setup is established. The conclusion of paper can provide the method and tool for reducer in electric vehicle.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0123/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 September 2024

Ling Wang, Jianqiu Gao, Changjun Chen, Congli Mei and Yanfeng Gao

Harmonic drives are used widely in aviation, robotics and instrumentation due to their benefits including high transmission ratio, compact structure and zero backlash. One of the…

Abstract

Purpose

Harmonic drives are used widely in aviation, robotics and instrumentation due to their benefits including high transmission ratio, compact structure and zero backlash. One of the common faults of a harmonic drive is the axial movement of the input shaft. In such a case, its input shaft moves in the axial direction relative to the body of the harmonic drive. The purpose of this study is to propose two fault diagnosis methods based on the current signal of the driving servomotor for the axial movement failure in terms of input shafts of harmonic drives.

Design/methodology/approach

In the two proposed fault diagnosis methods, the wavelet threshold algorithm is firstly used for filtering noises of the motor current signal. Then, the feature of the denoised current signal is extracted by the empirical mode decomposition (EMD) method and the wavelet packet energy-entropy (WPEE) theory, respectively, obtaining two kinds of feature sets. After a deep learning model based on the deep belief network (DBN) is constructed and trained by using these feature sets, we finally identify the normal harmonic drives and the ones with the axial movement fault.

Findings

In contrast to the traditional back propagation (BP) neural network model and support vector machine (SVM) model, the fault diagnosis methods based on the combination of the EMD (as well as the WPEE) and the DBN model can obtain higher accuracy rates of fault diagnosis for axial movement of harmonic drives, which can be greater than or equal to 97% based on the data of the performed experiment.

Originality/value

The authors propose two fault diagnosis methods based on the current signal of the driving servomotor for the axial movement failure in terms of input shafts of harmonic drives, which are verified by the experiment. The presented study may be beneficial for the development of self-diagnosis and self-repair systems of different robots and precision machines using harmonic drives.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 11 March 2024

Patrick Lecour

There is a lot of talk about the electric car today, but these vehicles are not new. Indeed, thebeginning of the 20th century saw electricity and the automobile take hold in North…

Abstract

Purpose

There is a lot of talk about the electric car today, but these vehicles are not new. Indeed, thebeginning of the 20th century saw electricity and the automobile take hold in North American society, so that by 1910, the electric car was everywhere. Until the turn of the 1920s, a new era dawned for transportation in the USA, but without the electric car. The purpose of this study is to question Why did it happen.

Design/methodology/approach

This paper develops such a comparison, not of the cars themselves, through a detailed engineering analysis, but rather of the marketing of electric vehicles in the USA in 1910 and 2010, as it appeared in the marketing strategies of the manufacturers.

Findings

There are many technical and economic reasons for this, but not only; there are also commercial strategy reasons. The position of manufacturers, especially through advertising and the press, can tell us about this golden age of the electric car, what precipitated its fall, and its reappearance a century later.

Originality/value

It is a comparison of images, of how electric vehicles had been and are proposed to the public, through the exploration of mainly promotional material and newspaper articles.

Details

Journal of Management History, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 3 September 2024

Yongming Wang, Jinlong Wang, Qi Zhou, Sai Feng and Xiaomin Wang

This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection…

Abstract

Purpose

This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection robot capable of adapting to various pipe diameters was designed.

Design/methodology/approach

The diameter-changing mechanism uses a multilink elastic telescopic structure consisting of telescopic rods, connecting rods and wheel frames, driven by a single motor with a helical drive scheme. A geometric model of the position relationships of the hinge points was established based on the two extreme positions of the diameter-changing mechanism.

Findings

A pipeline inspection robot was designed using a simple linkage agency, which significantly reduced the weight of the robot and enhanced its adaptive pipe diameter ability. The analysis determined that the robot could accommodate pipe diameters ranging from 332 mm to 438 mm. A static equilibrium equation was established for the robot in the hovering state, and the minimum pressing force of the wheels against the pipe wall was determined to be 36.68 N. After experimental testing, the robots could successfully pass a height of 15 mm, demonstrating the good obstacle capacity of the robot.

Practical implications

This paper explores and proposes a new type of multilink elastic telescopic variable diameter pipeline inspection robot, which has the characteristics of strong adaptability and flexible operation, which makes it more competitive in the field of pipeline inspection robots and has great potential market value.

Originality/value

The robot is characterized by the innovative design of a multilink elastic telescopic structure and the use of a single motor to drive the wheel for spiral motion. On the basis of reducing the weight of the robot, it has good pipeline adaptability, climbing ability and obstacle-crossing ability.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 July 2024

Feiyu Hou, Chaofeng Liu, Hongbo Jiang, Zhiren Tang, Pingtan Fang and Shenglan Wang

This paper explores the challenges of using cable-driven parallel robots on high-altitude, large-span facades, where redundancy in multicable systems and the elastic deformation…

Abstract

Purpose

This paper explores the challenges of using cable-driven parallel robots on high-altitude, large-span facades, where redundancy in multicable systems and the elastic deformation of the cables are significant issues. This study aims to improve the accuracy and stability of the work platform through enhanced control strategies. These strategies address the redundancy in multicable systems and reduce the risks associated with cable deformation and mechanical failures during large-span movements.

Design/methodology/approach

The paper proposes a dynamic model for a four-rope parallel robot designed explicitly for large-span applications. The study introduces a position–force control strategy incorporating kinematic inverse solutions and a rope dynamics model to account for rope elasticity and its effects. This approach increases the number of system equations to match the unknowns, effectively solving the redundancy problem inherent in multicable systems. In addition, the tension changes of ropes and the stability of the working platform are examined under different motion distances (X = 50 m and X = 100 m) and varying Young’s modulus values (K = 5000 MPa and K = 8000 MPa).

Findings

This study’s large-span rope force–position control strategy successfully resolves the typical nonlinear characteristics and external disturbances in multicable parallel systems. By continuously monitoring and adjusting cable tension and end positions, this strategy ensures precise control over each cable’s tension, optimizes the distribution of cable tensions and maintains the system’s stability and response speed. The analysis in this paper indicates that this control strategy significantly improves the motion accuracy of robots operating on large-span high-altitude facades.

Practical implications

Industry adoption: The design and control strategies developed for the four-cable-driven parallel robot can be adopted by companies specializing in facade maintenance, construction or inspection. This could lead to safer, more efficient and cost-effective operations, especially in challenging environments like high-rise buildings. Innovation in robotic solutions: The research can inspire innovation within the field of robotics, particularly in developing robots for specific applications such as large surface maintenance. It showcases how adaptive control and stability can be achieved in complex operational scenarios. Safety improvements: By demonstrating a more stable and precise control mechanism for navigating large facades, the study could contribute to significant safety improvements, reducing the risk of accidents associated with manual facade maintenance and inspection tasks.

Originality/value

This paper combines the force/position hybrid control method with actual robotic applications, offering a novel solution to the complex issue of controlling cable-driven parallel robots in challenging environments. Thus, it contributes to the field. The proposed method significantly enhances the precision and stability of such systems and provides robust technical support for high-precision tasks in complex mechanical settings.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 August 2024

Madhur Srivastava and Karuna Jain

The study assesses the most significant architectural core technological system that converges into a Battery Electric Vehicle (BEV).

Abstract

Purpose

The study assesses the most significant architectural core technological system that converges into a Battery Electric Vehicle (BEV).

Design/methodology/approach

Conceptually grounded in the convergence phenomenon and utilizing the graph theory-based network construction approach, based on the Betweenness Centrality (BC) metric, core International Patent Classifications (IPCs) have been empirically identified. Based on these IPCs, the ownership structure of the patents was established through assignee analysis.

Findings

Analyzing the networks obtained at different IPC levels, we found that multiple technologies have converged in a BEV, from battery chemistry to electrical engineering and thermal management of electrical machines.

Research limitations/implications

The outcome of this work has led to the identification of BEV technologies, which can be further developed to assess the trends of technologies and associated gaps and aid technology management for the selection, acquisition, and exploitation of technology.

Practical implications

The outcome of this work will aid technology management practitioners in better planning the selection, acquisition, and exploitation of technologies associated with BEV.

Originality/value

The paper adds an evidence-based approach to the body of knowledge to identify the built-in technologies that produce a BEV.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 12 August 2024

Yukei Oyama, Mohsen Rostami and Joon Chung

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and…

Abstract

Purpose

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft.

Design/methodology/approach

An unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft.

Findings

Upon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations.

Originality/value

The box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 June 2024

Ming Zhang, Lei Hou, Huaichao Guo, Hongyu Li, Feng Sun and Lijin Fang

This study aims to improve the robot’s performance during interactions with human and uncertain environments.

Abstract

Purpose

This study aims to improve the robot’s performance during interactions with human and uncertain environments.

Design/methodology/approach

A joint stiffness model was established according to the molecular current method and the virtual displacement method. The position and stiffness coordination controller and fuzzy adaptive controller of variable stiffness joint are designed, and the principle prototype of variable stiffness joint is built. The position step and trajectory tracking performance of the variable stiffness joint are verified through experiments.

Findings

Experimental test shows that the joint stiffness can be quickly adjusted. The accuracy of position and trajectory tracking of the joint increases with higher stiffness and decreases with increasing frequency. The fuzzy adaptive controller performed better than the position and stiffness coordination controller in controlling the position step and trajectory tracking of the variable stiffness joint.

Originality/value

A hybrid flux adjustment mechanism is proposed for the components of variable stiffness robot joints, which reduces the mass of the output end of variable stiffness joints and the speed of joint stiffness adjustment. Aiming at the change of system controller performance caused by the change of joint stiffness, a fuzzy adaptive controller is proposed to improve the position step and trajectory tracking characteristics of variable stiffness joints.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 August 2024

Xin He, Christelle Chretien, Thomas Weathers, Celine Burel, Guillaume Gody and Olivier Back

The purpose of this study is to create sustainable additives for future vehicles, characterized by low levels of sulfated ash, sulfur and phosphorus (SAPS) or even SAPS-free…

Abstract

Purpose

The purpose of this study is to create sustainable additives for future vehicles, characterized by low levels of sulfated ash, sulfur and phosphorus (SAPS) or even SAPS-free alternatives. These newly developed additives must not only match or outperform the current commercial benchmarks in terms of tribological performance, but also align with the emerging sustainability trends. It is anticipated that this innovative technology will yield promising outcomes in the realm of hybrid and electric vehicles.

Design/methodology/approach

This research primarily focused on chemical synthesis, performance evaluation and characterizations. These aspects were studied through collaboration between Syensqo, Southwest Research Institute (the USA) and the Lab of the Future in France. The data was generated and analyzed by a team of research scientists, internship students and technical specialists.

Findings

Two types of additives have been specifically designed and synthesized in accordance with sustainable requirements. Both technologies have exhibited exceptional frictional and wear-resistant properties. Moreover, the leading candidates exhibit a lower rate of copper corrosion, stable electric conductivity and outstanding thermal stability when compared to commercial benchmarks. This study is expected to open a new research avenue for developing next-generation additives for lubricants, with wide potential applications including hybrid electric vehicle and electric vehicle markets.

Originality/value

In the current lubricant market, there is a lack of effective low-SAPS or SAPS-free additives. This research aims to address this gap by designing sustainable additives for next-generation vehicles that not only meet specific requirements but also maintain optimal lubrication performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0033/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 205