Search results

1 – 3 of 3
Book part
Publication date: 18 July 2022

Kamal Gulati and Pallavi Seth

Introduction: With many new technologies requiring real-time data processing, cloud computing has become challenging to implement due to high bandwidth and high latency…

Abstract

Introduction: With many new technologies requiring real-time data processing, cloud computing has become challenging to implement due to high bandwidth and high latency requirements.

Purpose: To overcome this issue, edge computing is used to process data at the network’s edge. Edge computing is a distributed computing paradigm that brings computation and data storage closer to the location where it is needed. It is used to process time-sensitive data.

Methodology: The authors implemented the model using Linux Foundation’s open-source platform EdgeX Foundry to create an edge-computing device. The model involved getting data from an on-board sensor (on-board diagnostics (OBD-II)) and the GPS sensor of a car. The data are then observed and computed to the EdgeX server. The single server will send data to serve three real-life internet of things (IoT) use cases: auto insurance, supporting a smart city, and building a personal driving record.

Findings: The main aim of this model is to illustrate how edge computing can improve both latency and bandwidth usage needed for real-world IoT applications.

Details

Big Data Analytics in the Insurance Market
Type: Book
ISBN: 978-1-80262-638-4

Keywords

Content available
Book part
Publication date: 18 July 2022

Abstract

Details

Big Data Analytics in the Insurance Market
Type: Book
ISBN: 978-1-80262-638-4

Article
Publication date: 17 September 2021

Sukumar Rajendran, Sandeep Kumar Mathivanan, Prabhu Jayagopal, Kumar Purushothaman Janaki, Benjula Anbu Malar Manickam Bernard, Suganya Pandy and Manivannan Sorakaya Somanathan

Artificial Intelligence (AI) has surpassed expectations in opening up different possibilities for machines from different walks of life. Cloud service providers are pushing. Edge…

Abstract

Purpose

Artificial Intelligence (AI) has surpassed expectations in opening up different possibilities for machines from different walks of life. Cloud service providers are pushing. Edge computing reduces latency, improving availability and saving bandwidth.

Design/methodology/approach

The exponential growth in tensor processing unit (TPU) and graphics processing unit (GPU) combined with different types of sensors has enabled the pairing of medical technology with deep learning in providing the best patient care. A significant role of pushing and pulling data from the cloud, big data comes into play as velocity, veracity and volume of data with IoT assisting doctors in predicting the abnormalities and providing customized treatment based on the patient electronic health record (EHR).

Findings

The primary focus of edge computing is decentralizing and bringing intelligent IoT devices to provide real-time computing at the point of presence (PoP). The impact of the PoP in healthcare gains importance as wearable devices and mobile apps are entrusted with real-time monitoring and diagnosis of patients. The impact edge computing of the PoP in healthcare gains significance as wearable devices and mobile apps are entrusted with real-time monitoring and diagnosis of patients.

Originality/value

The utility value of sensors data improves through the Laplacian mechanism of preserved PII response to each query from the ODL. The scalability is at 50% with respect to the sensitivity and preservation of the PII values in the local ODL.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 3 of 3