Search results

1 – 3 of 3
Article
Publication date: 31 March 2022

Lina Qiu, Jin Tian, Weiwei Zhang, Aijun Gong and Weiyu Zhao

Sulfate-reducing bacteria (SRB) are recognized by scholars as the most important class of bacteria leading to corrosion of metal materials. It is important to use the properties…

Abstract

Purpose

Sulfate-reducing bacteria (SRB) are recognized by scholars as the most important class of bacteria leading to corrosion of metal materials. It is important to use the properties of microorganisms to inhibit the growth of SRB in the corrosion protection of metal materials and to protect the environment.

Design/methodology/approach

In this work, the behavior of anaerobic Thiobacillus denitrificans (TDN) intracellular enzyme inhibition of SRB corrosion of EH36 steel was investigated with electrochemical impedance spectroscopy, biological detection technology and X-ray photoelectron spectroscopy.

Findings

Results showed that the SRB crude intracellular enzyme affected the corrosion behavior of EH36 steel greatly and the purified TDN intracellular enzyme inhibits SRB intracellular enzyme corrosion to EH36 steel.

Originality/value

A perfect enzyme activity inhibition mechanism will provide theoretical guidance for the selection and application of anticorrosion microorganisms, which is of scientific significance in the field of microbial anticorrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 June 2017

Chor Yen Yap, Hongyi Kenneth Tan, Zhenglin Du, Chee Kai Chua and Zhili Dong

Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density metallic…

957

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density metallic components. The paper aims to identify suitable process parameters for SLM of processing of pure nickel powder and to study the microstructure of such products. The study also aims to characterize the microhardness and tensile properties of pure nickel produced by SLM.

Design/methodology/approach

A 24 factorial design experiment was carried out to identify the most significant factors on the resultant porosity of nickel parts. A subsequent experiment was carried out with a laser power of 350 W. The scanning speeds and hatch spacings were varied.

Findings

Scanning speed and hatch spacing have significant effects on the porosity of SLM components. A high relative density of 98.9 per cent was achieved, and microhardness of 140 to 160 Hv was obtained from these samples. A tensile strength 452 MPa was obtained.

Research limitations/implications

As the energy input levels were made in steps of 20 J/mm3 for the optimization study, the true optimal combination of parameters may have been missed. Therefore, researchers are encouraged to test the parameters with smaller variations in energy levels.

Practical implications

The paper provides a set of optimized parameters for the SLM of pure nickel. This study enables the three-dimensional (3D) printing of objects with nickel, which has applications in chemical catalyses and in microelectromechanical systems with its magnetostrictive properties.

Originality value

This research is the first in direct processing of pure nickel using SLM, with the identification of suitable process parameters. The study also provides an understanding of the porosity, microhardness, strength and microstructure of SLM produced nickel parts. This work paves the way for standardization of 3D printed nickel components and enables the applications of pure nickel via SLM.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 October 2018

Jing Xu, Xizhi Gu, Donghong Ding, Zengxi Pan and Ken Chen

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing…

1168

Abstract

Purpose

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures.

Design/methodology/approach

In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook.

Findings

A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports.

Originality/value

An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3