Search results

1 – 10 of over 6000
Article
Publication date: 1 November 2021

Yi Liu, Guangyao Qiu, Tao Li, Ang Yan, Yongfeng Liu, Rongjun Qu and Changmei Sun

To treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic…

Abstract

Purpose

To treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic framework (MOF) materials hybridizing with poly(p-phenylene terephthalamide) (PPTA) by means of a facile refluxing method and to systematically investigate adsorption performance for anionic dye Congo red as target molecule from aqueous solution.

Design/methodology/approach

The MOF materials hybridized by PPTA were fabricated by virtue of a facile refluxing method, characterized by thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared and pore structure.

Findings

The results showed that pseudo-second-order kinetic model could better describe the adsorption process for all the four materials, whereas Elovich model also fitted the process for the hybrid materials with PPTA. Adsorption isotherm analyses indicated that Langmuir isotherm could be used to describe the adsorption process. Introduction of appropriate amount of PPTA could enhance the adsorption affinity of the MOF materials for Congo red, and the maximum adsorption capacity could reach as high as 1,053.41 mg/g while that of the MOF material without PPTA was 666.67 mg/g, indicating introduction of PPTA could change the microenvironment of the MOF materials and increase the adsorption sites, leading to high adsorption efficiency.

Research limitations/implications

The microstructure of MOF hybridized materials in detail is the further and future investigation.

Practical implications

This study will provide a method to prepare MOF materials with high efficiency to treat anionic dyes like Congo red from aqueous solution.

Originality/value

Owing to the special characteristics of PPTA and similar to carbon tube, PPTA was introduced into MOF material to increased corresponding water stability. Because of aromatic ring and amide group on the surface of PPTA, the adsorption efficiency of the hybridized MOF material with appropriate amount of PPTA was greatly enhanced.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3553

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 November 2009

Lijuan Wang, Jian Li and Hao Feng

The purpose of this paper is to develop an environmentally friendly dyeing process using brown pigment from chestnut shells (BPFCS). This material is obtained from foodstuff…

Abstract

Purpose

The purpose of this paper is to develop an environmentally friendly dyeing process using brown pigment from chestnut shells (BPFCS). This material is obtained from foodstuff residues and can make a significant contribution to reusing a reproducible biomass resource, economizing petroleum, avoiding water pollution and protecting human health.

Design/methodology/approach

The brown pigment is extracted from the raw material and purified with solvents containing 30 and 100 per cent EtOH. It is then used to dye flax fabric in aqueous solution with added NaCl as a dye accelerator. The effects of dyeing conditions and fastness are investigated. The pigment, and the pristine and dyed fabrics are analysed by Fourier‐transform infrared spectroscopy (FT‐IR) and the fabric samples are observed using a scanning electron microscope (SEM). Fastness to washing, rubbing and light are also measured.

Findings

BPFCS show promising dyeability on cellulosic fibers. White flax fabric is successfully dyed with the pigment to a yellow‐brown colour. The base dyeing conditions are as follows: pigment concentration 16 g/l, NaCl concentration 10 g/l, liquor ratio 10:1, temperature 95°C, dyeing time 40 min. The dyed fabrics have lower fastness to washing and higher fastness to rubbing and light. A total of 4 per cent Al3+ or Fe2+ treatment of dyed fabric can improve fastness to washing, but decrease fastness to rubbing. The yellowish‐brown samples are transformed to brown or dark‐green after Al3+ or Fe2+ treatment, respectively. The pigment is a mixture with abundant hydroxyl groups.

Research limitations/implications

The studies of dyeing conditions and fastness are carried out in detail as BPFCS used as a dye. However, a qualitative analysis of the pigment could not be performed due to the difficulty of separating the mixture. The BPFCS used in this paper can dye cellulosic fiber and can also be used to dye other fibers such as silk, wool and PET. Dyeing conditions for these other fibers need to be investigated.

Practical implications

BPFCS may play an important role in the dyeing industries because of its good dyeability, lack of toxicity and resistance to water, rubbing and light. The present work offers an environmentally friendly dye and a simple dyeing method.

Originality/value

At present, no report exists in the literature of work on dyeing flax fabric with BPFCS. This paper represents a preliminary study to determine the relationships of dyeing conditions to fastness and the role of mordant. BPFCS appears to be a new and practically useful natural dye.

Details

Pigment & Resin Technology, vol. 38 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1102

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2015

Karthikeyan M Ramasamy

Organic cotton, which is produced without any chemical fertilizers and pesticides, is playing a vital role in creating a less harmful environment. An investigation of the…

Abstract

Organic cotton, which is produced without any chemical fertilizers and pesticides, is playing a vital role in creating a less harmful environment. An investigation of the properties of weft knitted fabrics produced from organically made cotton vis-à-vis regular cotton knitted fabric is reported. The yarn is made with both organically produced and regular cotton, and the fabric is knitted by using single jersey machines. The fabrics are subsequently dyed by using natural dyes. The naturally dyed knitted fabrics are examined for shrinkage, bursting strength, abrasion resistance, and colour fastness properties. The result shows that the knitted fabrics produced from organically grown cotton is superior in performance in comparison with fabrics produced from regular cotton.

Details

Research Journal of Textile and Apparel, vol. 19 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 March 2011

Kongliang Xie, Aiqin Hou and Lei Xu

The purpose of this paper is to investigate the effect of self‐emulsifying polysiloxanes containing multi‐cationic groups as resin on fastness properties of dyed cellulose fabrics.

Abstract

Purpose

The purpose of this paper is to investigate the effect of self‐emulsifying polysiloxanes containing multi‐cationic groups as resin on fastness properties of dyed cellulose fabrics.

Design/methodology/approach

Cellulose fabrics were dyed with three reactive dyes. Then, the self‐emulsifying polysiloxanes containing multi‐cationic groups as resin were applied to the dyed cellulose fabrics. The fastness properties were investigated.

Findings

The results show that the wet rubbing fastness, washing fastness and perspiration fastness of three dyed samples treated with novel self‐emulsifying polysiloxanes are higher than those of the dyed samples without the polymer treatment. The complexes of cellulose with the polysiloxanes having multi‐cationic groups are formed. With the increase of the quantity of cationic groups in the polymer macromolecules, the wet rubbing and washing fastness further increase. The self‐emulsifying polysiloxanes can affect the colour yields (K/S) of the dyed fabrics.

Originality/value

The self‐emulsifying polysiloxanes containing multi‐cationic groups are novel functional materials. They are easily self‐emulsifying in water, without the need of disperse agents, and form a transparent macromolecule colloid solution. Self‐emulsifying polysiloxanes as resins can change material properties to improve their wet fastness and gloss. They have potential application as resins in the coloration industry. This paper is an original research report and has not been published previously.

Details

Pigment & Resin Technology, vol. 40 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1250

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 1994

Y.M. ElKholy and S.A. Abd El‐Hafiz

In recent years heterocyclic azo dyes have been the subject of an intense research by dye manufacturers. Even so, little has been devoted to technical properties, so we have…

Abstract

In recent years heterocyclic azo dyes have been the subject of an intense research by dye manufacturers. Even so, little has been devoted to technical properties, so we have recently directed our research activities towards studying the ability of thiazole azo and hydrazono disperse dyes for dyeing of polyester and cellulose acetate.

Details

Pigment & Resin Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 8 April 2020

Azimah Omar, Muhamad Saipul Fakir, Khairus Syifa Hamdan, Nurul Hidayah Rased and Nasrudin Abd. Rahim

The purpose of this paper is to investigate the chemical, optical and photovoltaic properties of titanium dioxide/reduced graphene oxide (TiO2/rGO) photoanodes immersed in natural…

Abstract

Purpose

The purpose of this paper is to investigate the chemical, optical and photovoltaic properties of titanium dioxide/reduced graphene oxide (TiO2/rGO) photoanodes immersed in natural Roselle and synthetic (N719) dyes for dye-sensitized solar cell (DSSC) application.

Design/methodology/approach

TiO2 mixed with rGO were doctor-bladed on fluorine doped tin oxide (FTO) glass substrate. The chemical and optical properties of TiO2/rGO photoanodes immersed in Roselle and N719 dyes were characterized using Fourier-transformed infrared (FTIR) and ultraviolet–visible (UV–vis) spectroscopies, respectively. The DSSC’s photovoltaic performances were tested using Visiontec Solar I-V tester at standard illumination of AM1.5 and irradiance level of 100 mW/cm2.

Findings

The presence of anthocyanin dye from Roselle flower was detected at 604 nm and 718 nm. TiO2/rGO+Roselle dye sample revealed the smallest energy gap of 0.17 eV for ease of electron movement from valence band to conduction band. The TiO2/rGO-based DSSC fabricated with Roselle dye had a power conversion efficiency, ƞ of 0.743 per cent higher than TiO2/rGO photoanode sensitized with N719 dye (0.334 per cent). The obtained J-V curves were analyzed by a single-diode model of Lambert W-function and manual optimization to determine the internal electrical parameters of the DSSC. The average and uncertainty values of Jsc and ƞ were evaluated at different Rsh range of 1362 Ω to 32 k Ω.

Research limitations/implications

Rs values were kept constant during optimization work.

Originality/value

New ideality factor of TiO2/rGO-based DSSC was re-determined around 0.9995.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 6000