Search results

1 – 10 of over 11000
Article
Publication date: 31 December 2015

Venugopal Haridoss and Kandasamy Subramani

– The purpose of this paper is to present the optimal double sampling attribute plan using the weighted Poisson distribution.

Abstract

Purpose

The purpose of this paper is to present the optimal double sampling attribute plan using the weighted Poisson distribution.

Design/methodology/approach

For the given AQL and LQL, sum of producer’s and consumer’s risks have been attained. Based on the weighted Poisson distribution, the sum of these risks has been optimized.

Findings

In the final inspection, the producer and the consumer represent the same party. So, the sum these two risks should be minimized. In this paper, the sum of risks has been tabulated using the weighted Poisson distribution for different operating ratios. These tabulated values are comparatively less than the sum of risks derived using Poisson distribution.

Originality/value

The sampling plan presented in this paper is particularly useful for testing the quality of finished products in shop floor situations.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 September 2008

Belmiro P.M. Duarte and Pedro M. Saraiva

This purpose of this paper is to present an optimization‐based approach to support the design of attribute sampling plans for lot acceptance purposes, with the fraction of…

1761

Abstract

Purpose

This purpose of this paper is to present an optimization‐based approach to support the design of attribute sampling plans for lot acceptance purposes, with the fraction of non‐conforming items being modeled by a Poisson probability distribution function.

Design/methodology/approach

The paper approach stands upon the minimization of the error of the probability of acceptance equalities in the controlled points of the operating curve (OC) with respect to sample size and acceptance number. It was applied to simple and double sampling plans, including several combinations of quality levels required by the producer and the consumer. Formulation of the design of acceptance sampling plans as an optimization problem, having as a goal the minimization of the squared error at the controlled points of the OC curve, and its subsequent solution employing GAMS.

Findings

The results are in strong agreement with acceptance sampling plans available in the open literature. The papers approach in some scenarios outperforms classical sampling plans and allows one to identify the lack of feasible solutions.

Originality/value

An optimization‐based approach to support the design of acceptance sampling plans for attributes was conceived and tested. It allows for a general treatment of these problems, including the identification of a lack of feasible solutions, as well as making possible the determination of feasible alternatives by relaxing some model constraints.

Details

International Journal of Quality & Reliability Management, vol. 25 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 August 2010

Belmiro P.M. Duarte and Pedro M. Saraiva

This paper seeks to present an optimization‐based approach to design acceptance sampling plans by variables for controlling non‐conforming proportions in lots of items. Simple and…

Abstract

Purpose

This paper seeks to present an optimization‐based approach to design acceptance sampling plans by variables for controlling non‐conforming proportions in lots of items. Simple and double sampling plans with s known and unknown are addressed. Normal approximation distributions proposed by Wallis are employed to handle plans with s unknown. The approach stands on the minimization of the average sampling number (ASN) taking into account the constraints arising from the two point conditions on the operating characteristic (OC) curve. The resulting optimization problems fall under the class of mixed integer non‐linear programming (MINLP), and are solved employing GAMS. The results obtained strongly agree with classical acceptance sampling plans found in the literature, although outperforming them in some cases, and providing a general approach to address other cases.

Design/methodology/approach

The approach takes the form of formulation of the design of acceptance sampling plans by variables for non‐conforming proportions as optimization problems minimizing the ASN with the constraints being the acceptance probability at the controlled points of the OC curve, and subsequent solution of the mathematical programming problems arising with mathematical programming algorithms.

Findings

The results are in strong agreement with acceptance sampling plans available in the literature. The approach presented here outperforms the classical plans in some cases and its generality allows one to design other plans without the requirement of additional relations between the parameters and intensive enumerative algorithms.

Originality/value

The paper presents an optimization‐based approach to design robust acceptance sampling plans by variables for non‐conforming proportions that allows a general treatment and disregards the need for computational intensive enumerative‐based procedures.

Details

International Journal of Quality & Reliability Management, vol. 27 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 February 2018

Balamurali Saminathan and Usha Mahalingam

The purpose of this paper is to propose a new mixed repetitive group sampling (RGS) plan based on the process capability index, Cpk, where the quality characteristics of interest…

Abstract

Purpose

The purpose of this paper is to propose a new mixed repetitive group sampling (RGS) plan based on the process capability index, Cpk, where the quality characteristics of interest follow the normal distribution with unknown mean and unknown variance. Tables are constructed to determine the optimal parameters for practical applications for both symmetric and asymmetric fraction non-conforming cases. The advantages of this proposed mixed sampling plan are also discussed. The proposed sampling plan is also compared with other existing sampling plans.

Design/methodology/approach

In order to determine the optimal parameters of the proposed mixed RGS plan based on Cpk, the authors constructed tables for various combinations of acceptable and limiting quality levels (LQLs). For constructing tables, the authors followed the approach of two points on the operating characteristic (OC) curve. The optimal problem is formulated as a non-linear programming where the objective function to be minimized is the average sample number (ASN) and the constraints are related to lot acceptance probabilities at acceptable quality level and LQL under the OC curve.

Findings

The proposed mixed RGS plan will be a new addition to the literature of acceptance sampling. It is shown that the proposed mixed plan involves minimum ASN with desired protection to both producers and consumers compared to other existing sampling plans. The practical application of the proposed mixed sampling plan is also explained with an illustrative real-time example.

Originality/value

In this paper, the authors propose a new mixed RGS plan based on the process capability index Cpk, where the quality characteristic of interest follows the normal distribution with unknown mean and unknown variance. Tables are constructed to determine the optimal parameters for practical applications. The proposed mixed sampling plan can be used in all production industries. This kind of mixed RGS plan is not available in the literature.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 30 September 2021

Damla Yüksel, Yigit Kazancoglu and P.R.S Sarma

This paper aims to create a new decision-making procedure that uses “Lot-by-Lot Acceptance Sampling Plan by Attributes” methodology in the production processes when any production…

Abstract

Purpose

This paper aims to create a new decision-making procedure that uses “Lot-by-Lot Acceptance Sampling Plan by Attributes” methodology in the production processes when any production interruption is observed in tobacco industry, which is a significant example of batch production.

Design/methodology/approach

Based on the fish bone diagram, the reasons of the production interruptions are categorized, then Lot-by-Lot Acceptance Sampling Plan by Attributes is studied to overcome the reasons of the production interruptions. Furthermore, managerial aspects of decision making are not ignored and hence, acceptance sampling models are determined by an Analytical Hierarchy Process (AHP) among the alternative acceptance sampling models.

Findings

A three-phased acceptance sampling model is generated for determination of the reasons of production interruptions. Hence, the necessary actions are provided according to the results of the proposed acceptance sampling model. Initially, 729 alternative acceptance sampling models are found and 38 of them are chosen by relaxation. Then, five acceptance sampling models are determined by AHP.

Practical implications

The current experience dependent decision mechanism is suggested to be replaced by the proposed acceptance sampling model which is based on both statistical and managerial decision-making procedure.

Originality/value

Acceptance sampling plans are considered as a decision-making procedure for various cases in production processes. However, to the best of our knowledge Lot-by-Lot Acceptance Sampling Plan by Attributes has not been considered as a decision-making procedure for batch production when any production interruption is investigated.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 May 1992

David H. Baillie

Selects one of Hamaker′s procedures for deriving a “σ” method (i.e. known process standard deviation) double sampling plan and exploits some of its properties to develop a system…

Abstract

Selects one of Hamaker′s procedures for deriving a “σ” method (i.e. known process standard deviation) double sampling plan and exploits some of its properties to develop a system of “s” method (i.e. unknown process standard deviation) double sampling plans by variables that match the system of single specification limit “s” method single sampling plans of the current edition of the international standard on sampling by variables. ISO 3951: 1989. The new system is presented in two forms, the second of which may also be used for combined double specification limits and multivariate acceptance sampling.

Details

International Journal of Quality & Reliability Management, vol. 9 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 August 2023

Rafaela Aparecida Mendonça Marques, Aline Cristina Maciel, Antonio Fernando Branco Costa and Kleber Roberto da Silva Santos

This study investigates the repetitive mixed sampling (MRS) plan based on the Cpk index that was proposed by Aslam et al. (2013a). They were the first to study the MRS plan, but…

Abstract

Purpose

This study investigates the repetitive mixed sampling (MRS) plan based on the Cpk index that was proposed by Aslam et al. (2013a). They were the first to study the MRS plan, but they did not pay attention to the fact that submitting to the variable inspection a sample that was first submitted to the attribute inspection, truncates the X observations. In addition, they did not work with an accurate expression to calculate the probabilities of the Cpk statistic.

Design/methodology/approach

The authors presented the results based on their original sampling plan through Monte Carlo simulation and defined the theoretical results of their plan when the sample submitted to the variable inspection is no longer the same one submitted to the attribute inspection.

Findings

The β risks of the optimum sampling plans presented by Aslam et al. (2013a) are pretty high, exceeding 46%, on average – this same problem was also observed in Saminathan and Mahalingam (2018), Balamurali (2020) and Balamurali et al. (2020), where the β risks of their proposed sampling plans are yet higher.

Originality/value

In terms of originality, the authors can declare the following. It is not a big deal to propose new sampling plans, if one does not know how to obtain their properties. The miscalculations of the sampling plans risks are dangerous; imagine the situation where the acceptance of bad lots exceeds 50% just because the sampling plan was incorrectly designed. Yes, it is a big deal to warn that this type of problem is arising in a growing number of papers. The authors of this study are the pioneers to discover that many studies focusing on the sampling plans need to be urgently revised.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 January 2013

Kandasamy Subramani and Venugopal Haridoss

The purpose of this paper is to present the single sampling attribute plan for given acceptance quality level (AQL) and limiting quality level (LQL) involving minimum sum of risks…

514

Abstract

Purpose

The purpose of this paper is to present the single sampling attribute plan for given acceptance quality level (AQL) and limiting quality level (LQL) involving minimum sum of risks using weighted Poisson distribution.

Design/methodology/approach

For the given AQL and LQL, sum of producer's and consumer's risks have been attained. Based on weighted Poisson distribution, the sum of these risks has been arrived at, along with the acceptance number and the rejection number. Also, the operating characteristic function for the single sampling attribute sampling plan, using weighted Poisson distribution, has been derived.

Findings

In the final inspection, the producer and the consumer represent the same party. So, the sum these two risks should be minimized. In this paper, the sum of risks has been tabulated using weighted Poisson distribution for different operating ratios. These tabulated values are comparatively less than the sum of risks derived using Poisson distribution.

Originality/value

The sampling plan presented in this paper is particularly useful for testing the quality of finished products in shop floor situations.

Details

International Journal of Quality & Reliability Management, vol. 30 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 18 December 2009

Marvin Rothwell, Eui Park and Daebeom Kim

The reduction of the time and resources spent inspecting product is critical to the success of Company L's continued resourcing efforts. The use of Mil‐Std and other sampling plans

1262

Abstract

The reduction of the time and resources spent inspecting product is critical to the success of Company L's continued resourcing efforts. The use of Mil‐Std and other sampling plans with acceptance numbers greater than zero usually results in increased inspection sizes and potential for controversy in inspection results between inspectors. The time and resources used to complete these outgoing inspections are directly related to the amount of product currently required to be inspected in order to determine the acceptance or rejection of a lot of finished goods. This paper proposes a new sampling policy that will allow Company L to reduce the size of outgoing inspections. The data used in the paper are from 2006 to 2007. It is a combination of Overseas Inspection reports from all suppliers as well as sales volumes for products sold to Company L's partner companies. There are currently over 80 suppliers that manufacture products for Company L. The major finding of this paper is that it is possible to reduce inspection size while still maintaining, or in most cases reducing, the risks associated with sample inspections. This will be accomplished by switching from the current Mil‐Std plan to a Zero acceptance number sampling plan.

Details

Asian Journal on Quality, vol. 10 no. 3
Type: Research Article
ISSN: 1598-2688

Keywords

1 – 10 of over 11000