Search results

1 – 2 of 2
Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 September 2023

Kallaya Tantiyaswasdikul

This systematic literature review investigates the contribution of design thinking (DT) as a process and tool to drive innovation in a sustainable built environment (SBE) and…

Abstract

Purpose

This systematic literature review investigates the contribution of design thinking (DT) as a process and tool to drive innovation in a sustainable built environment (SBE) and develops a new model for sustainability research integrating DT and future thinking approaches toward achieving a unified DT and foresight notion for future research and applications.

Design/methodology/approach

This review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Open-access English articles published between 2000 and 2022 identified using the EBSCOhost, Emerald Insight, DOJA, JSTOR, Scopus and Taylor and Francis database searches were reviewed. The review framework deploys a previously proposed modified Ansoff matrix with an integrated innovation matrix to identify and analyze the challenges and opportunities for innovation growth in SBE. Additionally, a citation analysis was conducted to explore the impact of DT for innovation in SBE, and a proposed framework based on design by drawing on foresight theory was developed.

Findings

Research on DT for innovation in SBE faces the challenge of unanticipated impacts. According to the average number of citations per document, innovation associated with new solutions within a new context seems to become highly influential. Additionally, research gaps exist in the integration of foresight and DT into sustainability research to identify new contexts and solutions to SBE. A model of foresight design thinking (FDT) is proposed to guide future research and support the practical application of DT in sustainability.

Research limitations/implications

This analysis was limited by the selection criteria as only certain keywords were used and English-only articles were selected. Future research should consider the use of DT for innovation in SBE using various important keywords, which would improve research findings and expand the contribution of DT to SBE.

Practical implications

The FDT model offers a new holistic framework for the iterative process of reframing and reperception, focusing on divergent and convergent thinking with the goal of contributing to SBE practices.

Social implications

The integrated framework of DT and foresight can contribute to the study and development of sustainable innovation and a strategic shift toward a sustainable society.

Originality/value

The integration of DT, foresight and sustainability can broaden the horizons of sustainability research by systematically addressing future challenges related to SBE, which can be translated into feasible and innovative solutions. Thus, the FDT model complements the application of DT in sustainable innovation in this research field.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Year

Last week (2)

Content type

1 – 2 of 2