Search results

1 – 10 of 48
Article
Publication date: 13 November 2023

Yang Li and Tianxiang Lan

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual…

Abstract

Purpose

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual parameters.

Design/methodology/approach

This analysis is based on the numerical simulation data obtained, using the hybrid finite element–discrete element (FE–DE) method. The forecasting model was compared with the numerical results and the accuracy of the model was evaluated by the root mean square (RMS) and the RMS error, the mean absolute error and the mean absolute percentage error.

Findings

The multivariate nonlinear regression model can accurately predict the nonlinear relationships between injection rate, leakoff coefficient, elastic modulus, permeability, Poisson’s ratio, pore pressure and final fracture area. The regression equations obtained from the Newton iteration of the least squares method are strong in terms of the fit to the six sensitive parameters, and the model follow essentially the same trend with the numerical simulation data, with no systematic divergence detected. Least absolutely deviation has a significantly weaker performance than the least squares method. The percentage contribution of sensitive parameters to the final fracture area is available from the simulation results and forecast model. Injection rate, leakoff coefficient, permeability, elastic modulus, pore pressure and Poisson’s ratio contribute 43.4%, −19.4%, 24.8%, −19.2%, −21.3% and 10.1% to the final fracture area, respectively, as they increased gradually. In summary, (1) the fluid injection rate has the greatest influence on the final fracture area. (2)The multivariate nonlinear regression equation was optimally obtained after 59 iterations of the least squares-based Newton method and 27 derivative evaluations, with a decidability coefficient R2 = 0.711 representing the model reliability and the regression equations fit the four parameters of leakoff coefficient, permeability, elastic modulus and pore pressure very satisfactorily. The models follow essentially the identical trend with the numerical simulation data and there is no systematic divergence. The least absolute deviation has a significantly weaker fit than the least squares method. (3)The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Originality/value

The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 August 2023

Aurojyoti Prusty and Amirtham Rajagopal

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for…

Abstract

Purpose

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for the crack evolution scalar field in a finite element framework. To address this, non-Sibsonian type shape functions that are nonpolynomial types based on distance measures, are used in the context of natural neighbor shape functions. The capability and efficiency of this method are studied for modeling cracks.

Design/methodology/approach

The weak form of the fourth-order PFM is derived from two governing equations for finite element modeling. C0 non-Sibsonian shape functions are derived using distance measures on a generalized quad element. Then these shape functions are degree elevated with Bernstein-Bezier (BB) patch to get higher-order continuity (C1) in the shape function. The quad element is divided into several background triangular elements to apply the Gauss-quadrature rule for numerical integration. Both fourth-order and second-order PFMs are implemented in a finite element framework. The efficiency of the interpolation function is studied in terms of convergence and accuracy for capturing crack topology in the fourth-order PFM.

Findings

It is observed that fourth-order PFM has higher accuracy and convergence than second-order PFM using non-Sibsonian type interpolants. The former predicts higher failure loads and failure displacements compared to the second-order model due to the addition of higher-order terms in the energy equation. The fracture pattern is realistic when only the tensile part of the strain energy is taken for fracture evolution. The fracture pattern is also observed in the compressive region when both tensile and compressive energy for crack evolution are taken into account, which is unrealistic. Length scale has a certain specific effect on the failure load of the specimen.

Originality/value

Fourth-order PFM is implemented using C1 non-Sibsonian type of shape functions. The derivation and implementation are carried out for both the second-order and fourth-order PFM. The length scale effect on both models is shown. The better accuracy and convergence rate of the fourth-order PFM over second-order PFM are studied using the current approach. The critical difference between the isotropic phase field and the hybrid phase field approach is also presented to showcase the importance of strain energy decomposition in PFM.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 July 2023

Yongliang Wang

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal…

Abstract

Purpose

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion. Fracture propagation in the process of multistage fracturing of a rock mass is deflected owing to various factors. Hydrofracturing of rock masses in deep tight reservoirs involves thermal diffusion, fluid flow and deformation of rock between the rock matrix and fluid in pores and fractures.

Design/methodology/approach

To study the unstable propagation behaviours of three-dimensional (3D) parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion, a 3D engineering-scale numerical model is established under different fracturing scenarios (sequential, simultaneous and alternate fracturing) and different perforation cluster spacings while considering the thermal-hydro-mechanical coupling effect. Stress disturbance region caused by fracture propagation in a deep tight rock mass is superimposed and overlaid with multiple fractures, resulting in a stress shadow effect and fracture deflection.

Findings

The results show that the size of the stress shadow areas and the interaction between fractures increase with decreasing multiple perforation cluster spacing in horizontal wells. Alternate fracturing can produce more fracture areas and improve the fracturing effect compared with those of sequential and simultaneous fracturing. The larger the temperature gradient between the fracturing fluid and rock matrix, the stronger the thermal diffusion effect, and the effect of thermal diffusion on the fracture propagation is significant.

Originality/value

This study focuses on the behaviours of the unstable dynamic propagation of 3D parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion. Further, the temperature field affects the fracture deflection requires could be investigated from the mechanisms; this paper is to study the unstable propagation of fractures in single horizontal well, which can provide a basis for fracture propagation and stress field disturbance in multiple horizontal wells.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 October 2023

Bin Chen, Quanlin Zhou and Yuan Wang

Thermal fractures initiated under cooling at the surfaces of a 2-D or 3-D structure propagate, arrest and coalesce, leading to its structural failure and material-property…

Abstract

Purpose

Thermal fractures initiated under cooling at the surfaces of a 2-D or 3-D structure propagate, arrest and coalesce, leading to its structural failure and material-property changes, while the same processes can happen in the rock mass between parallel hydraulic fractures filled with cold fluid, leading to enhanced fracture connectivity and permeability.

Design/methodology/approach

This study used a 2-D plane strain fracture model for mixed-mode thermal fractures from two parallel cooling surfaces. Fracture propagation was governed by the theory of linear elastic fracture mechanics, while the displacement and temperature fields were discretized using the adaptive finite element method. This model was validated using two numerical benchmarks with strong fracture curvature and then used to simulate the propagation and coalescence of thermal fractures in a long rock mass.

Findings

Modeling results show two regimes: (1) thermal fractures from a cooling surface propagate and arrest by following the theoretical solutions of half-plane fractures before the unfractured portion decreases to 20% rock-mass width and (2) some pairs of fractures from the opposite cooling surfaces tend to eventually coalesce. The fracture coalescence time is in a power law with rock-mass width.

Originality/value

These findings are relevant to both subsurface engineering and material engineering: structure failure is a key concern in the latter, while fracture coalescence can enhance the connectivity of thermal and hydraulic fractures and thus reservoir permeability in the former.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 9 August 2023

Ziyan Guo, Xuhao Liu, Zehua Pan, Yexin Zhou, Zheng Zhong and Zilin Yan

In recent years, the convolutional neural network (CNN) based deep learning approach has succeeded in data-mining the relationship between microstructures and macroscopic…

Abstract

Purpose

In recent years, the convolutional neural network (CNN) based deep learning approach has succeeded in data-mining the relationship between microstructures and macroscopic properties of materials. However, such CNN models usually rely heavily on a large set of labeled images to ensure the accuracy and generalization ability of the predictive models. Unfortunately, in many fields, acquiring image data is expensive and inconvenient. This study aims to propose a data augmentation technique to enhance the performance of the CNN models for linking microstructural images to the macroscopic properties of composites.

Design/methodology/approach

Microstructures of composites are synthesized using discrete element simulations and Potts kinetic Monte Carlo simulations. Macroscopic properties such as the elastic modulus, Poisson's ratio, shear modulus, coefficient of thermal expansion, and triple-phase boundary length density are extracted on representative volume elements. The CNN model is trained using the 3D microstructural images as inputs and corresponding macroscopic properties as the labels. The comparison of the predictive performance of the CNN models with and without data augmentation treatment are compared.

Findings

The comparison between the prediction performance of CNN models with and without data augmentation showed that the former reduced the weighted mean absolute percentage error (WMAPE) for the prediction from 5.1627% to 1.7014%. This significant reduction signifies that the proposed data augmentation method can effectively enhance the generalization ability and robustness of CNN models.

Originality/value

This study demonstrates that data augmentation is beneficial for solving the problems of model overfitting, data scarcity, and sample imbalance for CNN-based deep learning tasks at a low cost. By developing more and advanced data augmentation techniques, deep learning accelerated homogenization will boost the multi-scale computational mechanics and materials.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 October 2023

Aoxiang Qiu, Weimin Sang, Feng Zhou and Dong Li

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied…

Abstract

Purpose

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied to incompressible flows at a low Reynolds number, which is not sufficient to satisfy the needs of aircraft engineering. Devoted to tackling the defect, the paper proposes a developed LBM combining the subgrid model and the multiple relaxation time (MRT) approach. A multilayer adaptive Cartesian grid method to improve the computing efficiency of the traditional LBM is also employed.

Design/methodology/approach

The subgrid model and the multilayer adaptive Cartesian grid are introduced into MRT-LBM for simulations of incompressible flows at a high Reynolds number. Validated by several typical flow simulations, the numerical methods in this paper can efficiently study the flows under high Reynolds numbers.

Findings

Some numerical simulations for the lid-driven flow of cavity, flow around iced GLC305, LB606b and ONERA-M6 are completed. The paper presents the investigation results, indicating that the methods are accurate and effective for the separated flow after icing.

Originality/value

LBM is developed with the addition of the subgrid model and the MRT method. A numerical strategy is proposed using a multilayer adaptive Cartesian grid method and its treatment of boundary conditions. The paper refers to innovative algorithm developments and applications to the aircraft engineering, especially for iced wing simulations with flow separations.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2023

Liang Gong, Hang Dong, Xin Cheng, Zhenghui Ge and Liangchao Guo

The purpose of this study is to propose a new method for the end-to-end classification of steel surface defects.

Abstract

Purpose

The purpose of this study is to propose a new method for the end-to-end classification of steel surface defects.

Design/methodology/approach

This study proposes an AM-AoN-SNN algorithm, which combines an attention mechanism (AM) with an All-optical Neuron-based spiking neural network (AoN-SNN). The AM enhances network learning and extracts defective features, while the AoN-SNN predicts both the labels of the defects and the final labels of the images. Compared to the conventional Leaky-Integrated and Fire SNN, the AoN-SNN has improved the activation of neurons.

Findings

The experimental findings on Northeast University (NEU)-CLS demonstrate that the proposed neural network detection approach outperforms other methods. Furthermore, the network’s effectiveness was tested, and the results indicate that the proposed method can achieve high detection accuracy and strong anti-interference capabilities while maintaining a basic structure.

Originality/value

This study introduces a novel approach to classifying steel surface defects using a combination of a shallow AoN-SNN and a hybrid AM with different network architectures. The proposed method is the first study of SNN networks applied to this task.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 48