Search results

1 – 10 of 177
Article
Publication date: 3 November 2023

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in…

Abstract

Purpose

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in the design and analysis of maximum power point trackers and power converters. This study aims to propose the analysis and modeling of a simplified three-diode model based on the manufacturer’s performance data.

Design/methodology/approach

A novel technique is presented to evaluate the PV cell constraints and simplify the existing equation using analytical and iterative methods. To examine the current equation, this study focuses on three crucial operational points: open circuit, short circuit and maximum operating points. The number of parameters needed to estimate these built-in models is decreased from nine to five by an effective iteration method, considerably reducing computational requirements.

Findings

The proposed model, in contrast to the previous complex nine-parameter three-diode model, simplifies the modeling and analysis process by requiring only five parameters. To ensure the reliability and accuracy of this proposed model, its results were carefully compared with datasheet values under standard test conditions (STC). This model was implemented using MATLAB/Simulink and validated using a polycrystalline solar cell under STC conditions.

Originality/value

The proposed three-diode model clearly outperforms the earlier existing two-diode model in terms of accuracy and performance, especially in lower irradiance settings, according to the results and comparison analysis.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 December 2022

Pallav Rawal and Sanyog Rawat

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing…

Abstract

Purpose

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing the connectivity to cover different wireless services that operate different frequency range. Pattern reconfigurable antenna can improve security, avoid noise and save energy. Due to their compactness and better performance at different applications, reconfigurable antennas are very popular among the researchers. The purpose of this work, is to propose a novel design of S-shaped antenna with frequency and pattern diversity. The pattern and frequency reconfiguration are controlled via ON/OFF states of the PIN diode.

Design/methodology/approach

The geometrical structure of the proposed antenna dimension is 18 × 18 × 0.787 mm3 with εr = 2.2 dielectric constant. Three S-shaped patches are connected to a ring patch through PIN diodes. The approximate circumference of ring patch is 18.84 mm and length of patch is 5 mm, so approximate length of radiating patch is 14.42 mm and effective dielectric constant is 1.93. Conductor backed coplanar waveguide (CPW) is used for feeding. The proposed antenna is designed and simulated on CST microwave studio and fabricated using photolithography process. Measurements have been done in anechoic chamber.

Findings

Antenna shows the dual band operation at 2.1 and 3.4 GHz frequency. The first band remains constant at 2.1 GHz resonant frequency and 200–400 MHz impedance bandwidth. Second band is switched at seven different resonant frequencies as 3.14, 3.45, 3.46, 3.68, 3.69, 3.83 and 3.86 GHz with switching of the diodes. The −10 dB bandwidth is more than 1.4 GHz.

Research limitations/implications

Pattern reconfigurability can be achieved using mechanical movement of antenna easily but it is not a reliable approach for planar antennas. Electronic switching method is used in proposed antenna. Antenna size is very small so fabrication is very crucial task. Measured results are deviated from simulation results due to fabrication error and effect of leads of diodes, connecting wires and battery.

Practical implications

The reconfiguration of the proposed antenna is controlled via ON/OFF states of the three PIN diodes. The lower band of 2.1 GHz is fixed, while second band is switched at five different resonant frequencies as 3.27, 3.41, 3.45, 3.55 and 3.88 GHz, with switching of the PIN diodes with all state of diodes and exhibit pattern reconfigurability at 2.1 GHz frequency. At second band center frequency is significantly changed with state of diodes and at 3.4 GHz pattern is also changed with state of diodes, hence antenna exhibits frequency and pattern reconfigurability.

Originality/value

A novel design of pattern and frequency reconfigurable antenna is proposed. Here, work is divided into two parts: first is frequency reconfiguration and second is radiation pattern reconfiguration. PIN diodes as switch are used to select the frequency band and reconfigure the radiation pattern. This proposed antenna design is novel dual band frequency and pattern reconfigurable antenna. It resonates at two distinct frequencies, i.e. 2.1 and 3.4 GHz, and has a pattern tilt from 0° to 355°. The conductor backed CPW feed technique is used for impedance matching.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 April 2023

Guoyu Zhang, Honghua Wang, Tianhang Lu, Chengliang Wang and Yaopeng Huang

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven…

40

Abstract

Purpose

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven parameters of the two-diode model of PV modules with high accuracy.

Design/methodology/approach

The proposed hybrid approach combines an improved particle swarm optimization (IPSO) algorithm with an analytical approach. Three parameters are optimized using IPSO, whereas the other four are analytically determined. To improve the performance of IPSO, three improvements are adopted, that is, evaluating the particles with two evaluation functions, adaptive evolutionary learning and adaptive mutation.

Findings

The performance of proposed approach is first verified by comparing with several well-established algorithms for two case studies. Then, the proposed method is applied to extract the seven parameters of CSUN340-72M under different operating conditions. The comprehensively experimental results and comparison with other methods verify the effectiveness and precision of the proposed method. Furthermore, the performance of IPSO is evaluated against that of several popular intelligent algorithms. The results indicate that IPSO obtains the best performance in terms of the accuracy and robustness.

Originality/value

An improved hybrid approach for parameter identification of the two-diode model of PV modules is proposed. The proposed approach considers the recombination saturation current of the p–n junction in the depletion region and makes no assumptions or ignores certain parameters, which results in higher precision. The proposed method can be applied to the modeling and simulation for research and development of PV systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 February 2022

Tao Lin, Yaning Li, Rongjin Zhao, Zekun Ma and Jianan Xie

This paper aims to improve the device performance from the perspective of reducing ohmic contact resistance; the effects of different electrode structures and alloying parameters…

Abstract

Purpose

This paper aims to improve the device performance from the perspective of reducing ohmic contact resistance; the effects of different electrode structures and alloying parameters on the series resistance and power-current-voltage of laser diodes (LDs) have been investigated in this paper.

Design/methodology/approach

Four groups of p-GaAs side metal electrodes with different metal layer arrangements and thicknesses are fabricated for the investigated LDs. The investigated p-GaAs side electrodes are based on Ti/Pt/Au material and the n-GaAs side metal electrodes all have a same structure of Ni/Ge/Ni/Au/Ti/Pt/Au. The LDs with different electrodes were alloyed at 380°C for 60 s and 420°C for 80 s.

Findings

The experimental results show that the series resistance decreases by 14%–20%, the output power increases by 2%–2.2% and the conversion efficiency increases by 1.69%–2.16% for the LDs prepared with optimized alloying parameters (420°C for 80 s). The laser diode with p-GaAs side Ti/Pt/Au electrode of 30/70/100 nm has the best device characteristics under both annealing conditions.

Originality/value

The utilization of this improvement on ohmic contact property in electrode is not only very important for upgrading high-power LDs but also helpful for GaAs-based microelectronic devices such as HBT and monolithic microwave integrated circuit.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 December 2022

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction…

Abstract

Purpose

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction capacitors of the primary side switching and the parasitic parameters of the secondary side diodes converted to the primary side, which will cause the voltage gain decreased when the switching frequency decreased.

Design/methodology/approach

This paper proposes an optimization parameters design method to solve this problem, which was based on impedance model considering the parasitic parameters of switching devices and diodes.

Findings

The effectiveness of the proposed method is verified by impedance Bode plots and experimental results.

Originality/value

From the perspective of impedance modeling, this paper finds the reasons for the insufficient voltage regulation capability of LLC resonant converters under heavy load and finds solutions through analysis.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

25

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 May 2023

Hao Chen, Fan Yang, Miguel Pablo Aguirre, Muhammad Asghar Saqib, Galina Demidova, Alecksey Anuchin, Mohamed Orabi, Ryszard Palka, Liudmila Ivanovna Sakhno and Nikolay Vladimirovich Korovkin

Because of the shortage of energy, the development of green and reliable energy is particularly important. As a green and clean energy, wind power is widely used. As the core…

Abstract

Purpose

Because of the shortage of energy, the development of green and reliable energy is particularly important. As a green and clean energy, wind power is widely used. As the core component of wind power generation, it is particularly important to choose generators with high reliability. Switched reluctance machine is widely used as generators because of its strong fault tolerance and high reliability. Therefore, this paper aims to propose a power converter and its control strategy to improve the efficiency of switched reluctance generators.

Design/methodology/approach

In this paper, a full-bridge power converter (FBPC) instead of the asymmetric half-bridge power converter (AHBPC) is adopted to drive the switched reluctance generator (SRG) system. Compare the FBPC with the AHBPC, the FBPC has several advantages including low cost and modularization, and operation process of SRG winding current direction is variable.

Findings

The results show that the SRG system can keep smooth operation by the FBPC with relatively high efficiency.

Originality/value

The FBPC is suitable to drive the SRG system. Meanwhile, this paper introduces two excitation modes of the FBPC as three-phase three-beat mode and six-phase six-beat mode. When the six-phase six-beat control strategy is adopted, the dead band time of the converter can be avoided. At the same time, the SRG has higher efficiency.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 April 2023

Dangshu Wang, Jiaan Yi, Luwen Song, Xuan Deng, Xinxia Wang and Zhen Dong

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Abstract

Purpose

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Design/methodology/approach

This paper proposes a simple and reliable two-stage isolated inverter composed of series quasi-resonant push-pull and external freewheeling diode full-bridge inverter. The power supply topology is analyzed, the topology mode is analyzed, the mathematical model of the converter is established and the DC gain of the converter is deduced. The relationship between the load and the output gain of the resonant tank is presented, a new resonant parameter design method is proposed, and the parameter design of the resonant element of the converter is clarified.

Findings

The resonant components of the converter are designed according to the proposed resonant parameter design method, and the correctness of the method is verified by simulation and the development and testing of a 500 W experimental prototype. After experimental tests, the peak efficiency of the experimental prototype can reach 94%. Because the experimental prototype achieves soft switching, the heat generation of the switch is greatly reduced, so the heavy heat sink is removed, and the volume is reduced by about 30% compared with the traditional power supply, and the total harmonic distortion of the output voltage is about 2%.

Originality/value

The feasibility of the scheme is verified by experiments, which is of great significance for improving the efficiency of the inverter power supply and parameter optimization.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 31 May 2022

Srinivasan Vadivel, Boopathi C.S., Sridhar R. and Tarana Kaovasia

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss…

Abstract

Purpose

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss but also exhibits multiple power peaks. Due to these multiple power peaks, the maximum power point tracking (MPPT) controllers’ performance will be affected, as most of the times it ends up in tracking the local maximum power peak and not the global power peak.

Design/methodology/approach

The PV panels in an PV array when getting shaded even partially would result in huge power loss. The pattern of shading also plays a crucial role, as it renders a cascaded impact on the overall power output because the cells/panels are connected in series and are parallel. Therefore, during shading, intelligent schemes are needed to appropriately connect and discard the unhealthy and healthy panels in right place with right combination. This research proposes one such scheme to mitigate the shading impact.

Findings

To mitigate the shading impact and also to have a smooth power-voltage (P-V) curve, a new series inducing switching scheme is introduced. The proposed scheme not only mitigates the shading impact and enhances the output power but also smoothens the P-V curve that facilitates the MPPTs to track the P-V appropriately.

Originality/value

The research findings are inventive in nature and not copied work. The reference works and the inspirations have been duly cited and credited.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 177