Search results

1 – 10 of 809
Article
Publication date: 10 January 2020

Shi Yang Pan, Jing Cheng and Tong Chun Li

The meshfree node-based smoothed point interpolation method (NS-PIM) is extended to the forward and inversion analysis of a high gravelly soil core rock-fill dam during…

Abstract

Purpose

The meshfree node-based smoothed point interpolation method (NS-PIM) is extended to the forward and inversion analysis of a high gravelly soil core rock-fill dam during construction periods.

Design/methodology/approach

As one member of the meshfree methods, the NS-PIM has the advantages of “softer” stiffness and adaptability to large deformations which is quite indispensable for the stability analysis of rock-fill dams. In this work, the present method contains a reconstruction procedure to deal with the existence or nonexistence of the construction layers. After verifying the validity of the NS-PIM method for nonlinear elastic model during construction period, the convergence features of the NS-PIM and FEM methods are further investigated with different mesh schemes. Furthermore, the NS-PIM and FEM methods are applied for the forward analysis of a high gravelly soil core rock-fill dam and the convergence features under complex stress conditions are also studied using the rock-fill dam model. Finally, the NS-PIM method is used to calculate the Duncan–Chang parameters of the deep overburden under the high gravelly soil core rock-fill dam based on the back-propagation neural network method.

Findings

The results show that: the NS-PIM solution for construction analysis still possesses the property of upper bound solution even under complex stress conditions and can provide comparatively more conservative results for safety evaluation. Furthermore, it can be used to evaluate the accuracy of results and mesh quality together with the FEM solution which has the property of lower bound solution; the inversion analysis in this work provides a set of material parameters for the deep overburden under high rock-fill dam during construction period and the calculated results show good agreement with the measured displacement values and it is feasible to apply the NS-PIM to the forward and inversion analysis of high rock-fill dams on deep overburden during construction periods.

Research limitations/implications

In further study, the feasibility of three-dimensional problems, elastic–plastic problems, contact problems and multipoint inversion can still be probed in the NS-PIM solution for the forward and inversion analysis of high rock-fill dams on deep overburden.

Practical implications

This paper introduced a method for the forward and inversion analysis of high rock-fill dams during construction period using the NS-PIM solution. The property of upper bound solution ensures that the NS-PIM can provide more conservative results for safety evaluation. The inversion analysis in this work provides a set of material parameters for the deep overburden under high rock-fill dam during construction periods.

Originality/value

First, the analysis from forward to inversion for high rock-fill dams during construction period using the NS-PIM solution is accomplished in this work. A procedure dealing with the existence or nonexistence of the construction layers is also developed for the construction analysis. Second, it is confirmed in this work that the NS-PIM still possesses the property of upper bound solution even under complex stress conditions (the forward analysis of high rock-fill dams during construction period). Thus, more conservative results can be provided for safety evaluation. Furthermore, it can be used to evaluate the accuracy of results and mesh quality together with the FEM solution which has the property of lower bound solution. Third, the calculated material parameters of the deep overburden in this work can be used for further studies of the high rock-fill dam.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2023

Haodong Fan, Feng Luo, Shuai Gao, Meng Li, Zhen Lv and Geng Sun

This study aims to clarify the evolution law of stress field and fracture field during the mining process of inclined coal seam, to prevent the occurrence of roof burst water and…

Abstract

Purpose

This study aims to clarify the evolution law of stress field and fracture field during the mining process of inclined coal seam, to prevent the occurrence of roof burst water and impact ground pressure accident during the advancing process of working face.

Design/methodology/approach

The evolution law of stress-fracture field under different mining conditions of inclined coal seam was studied by using discrete element method and similar material simulation method.

Findings

The overburden stress at the lower end of the coal seam was mainly transmitted to the deep rock mass on the left side, and the overburden stress at the upper end was mainly transmitted to the floor direction. With the increase of the inclined length of the mining coal seam, the development of the fracture zone gradually evolves from the “irregular arch” form to the “transversely developed trapezoid” form. The development range of the fracture zone was always in the internal area of the stress concentration shell.

Originality/value

An original element of this paper is based on the condition that the dip angle of coal seam is 35°, and the evolution law of overburden stress-fracture field during the excavation of coal seam with different lengths was analyzed by UDEC numerical simulation software. The coupling relationship between stress shell and fracture field was proposed, and the development range of fracture zone was determined by stress. The value of this paper is to provide technical support and practical basis for the safety production of a mine working face.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 October 2020

Wenyuan Liu, Chunde Piao, Yazhou Zhou and Chaoqi Zhao

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining…

Abstract

Purpose

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining area can be divided into zones with different degrees of risk, and the prevention measures can be taken for the areas predicted to have large deformation.

Design/methodology/approach

A similar-material model was built by geological and mining conditions of Zhangzhuang Coal Mine. The evolution characteristics of overburden strain were studied by using the distributed optical fiber sensing (DOFS) technology and the predictive model about overburden deformation was established by applying machine learning. The modeling method of the predictive model based on the similar-material model test was summarized. Finally, this method was applied to engineering.

Findings

The strain value predicted by the proposed model was compared with the actual measured value and the accuracy is as high as 97%, which proves that it is feasible to combine DOFS technology with machine learning and introduce it into overburden deformation prediction. When this method was applied to engineering, it also showed good performance.

Originality/value

This paper helps to promote the application of machine learning in the geosciences and mining engineering. It provides a new way to solve similar problems.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2023

Yi Sui, Yi Wang and Xiang Yu

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to…

Abstract

Purpose

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to improve evaluation methods for nonlithological foundation reinforcements, as this issue is bound to become an unavoidable task.

Design/methodology/approach

A nonlinear seismic wave input method is adopted to consider both a nonlinear viscoelastic artificial boundary and the nonlinear properties of the overburden layer soil. Subsequently, the effects of certain vital parameters on the structural response are analyzed.

Findings

A suitable range for the size of the overburden foundation is suggested. Then, when piles are used to reinforce the overburden foundation, the peak frequencies in the floor response spectra (FRS) in the horizontal direction becomes higher (38%). Finally, the Poisson ratio of the foundation soil has a significant influence on the FRS peak frequency in the vertical direction (reduce 35%–48%).

Originality/value

The quantifiable results are performed to demonstrate the seismic responses with respect to key design parameters, including foundational dimensions, the Poisson Ratio of the soil and the depth of the foundation. The results can help guide the development of seismic safety requirements for NPPs.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 September 2023

Francis Annor, Grace Nuerkie Ayertey and Collins Badu Agyemang

Emotions are an important aspect of work performance but are often overlooked, especially amongst preschool teachers whose work environment is laden with emotional job demands…

Abstract

Purpose

Emotions are an important aspect of work performance but are often overlooked, especially amongst preschool teachers whose work environment is laden with emotional job demands. The present study aims to examine the mediating role of emotional exhaustion in the relationship between emotional labour and contextual performance.

Design/methodology/approach

Using a cross-sectional design, data were obtained from 288 preschool teachers in the Tema Metropolis in the Greater Accra region of Ghana. The study's hypotheses were tested using structural equation modelling with maximum likelihood estimation in AMOS 21.0.

Findings

The structural equation modelling analyses revealed that deep acting had a direct positive relationship with contextual performance, whereas the direct relationship between surface acting and contextual performance was not statistically significant. Furthermore, deep acting and surface acting were indirectly related to contextual performance via emotional exhaustion.

Practical implications

The study's findings underscore the need for educational institutions and managers to create a supportive environment for teachers engaging in emotional labour, and to ensure that emotional labour is not overburdening teachers.

Originality/value

The study contributes to the literature on teachers' engagement in discretionary behaviours by elucidating emotional exhaustion as a linking mechanism between emotional labour and contextual performance in a non-Western context. This is one of the few studies to link emotional labour to contextual performance in the educational context.

Details

International Journal of Educational Management, vol. 37 no. 6/7
Type: Research Article
ISSN: 0951-354X

Keywords

Article
Publication date: 14 July 2022

Yongliang Wang, Jin Huang and Guocheng Wang

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration…

Abstract

Purpose

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.

Design/methodology/approach

This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.

Findings

The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.

Originality/value

The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2021

Tu Hongsheng, Huang Changwen and Guo Chenye

Currently, the existing similar simulation is still limited in the following aspects: un-rotatable laboratory devices, the difficulty in the pavement on steep seams and great…

Abstract

Purpose

Currently, the existing similar simulation is still limited in the following aspects: un-rotatable laboratory devices, the difficulty in the pavement on steep seams and great error of the experimental data.

Design/methodology/approach

To address above-mentioned problems, this study combined theoretical analysis and numerical simulation and developed a rotatable experimental system for similar simulation on steep coal seam mining on the premise of ensuring experimental safety.

Findings

The present experimental system mainly consists of the model support, the rotation system and the bearing system. By taking into account the experimental requirements and actual laboratory space, the sizes of the model support and the bearing system were determined. Considering the requirements in space limit and rotation stability, the rotation mode of vertical sliding on the left side and the horizontal sliding on the lower side was designed.

Originality/value

Using programmable logic controller automatic angle control technology, the rotation angle, velocity and displacement of the model can be automatically adjusted and controlled so as to achieve safe rotation and precise control. Finally, the calculation method of the mass of the required similar materials for paving the coal strata at different inclination angles and in different horizons was analyzed, and the related mass proportion calculation software was developed.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 August 2011

Yaser Jafarian, Mohammad H. Baziar, Mohammad Rezania and Akbar A. Javadi

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential…

Abstract

Purpose

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential under field conditions. The paper seeks to discuss this measure.

Design/methodology/approach

Using centrifuge tests data, it is shown that seismic pore water pressure buildup is proportional to cumulative KED at a particular soil depth. Linear relationships are found between cumulative kinetic energy and corresponding cumulative strain energy. To consider the effect of soil amplification, several equivalent linear ground response analyses are performed and the results are used to derive an equation for depth reduction factor of peak kinetic energy density. Two separate databases of liquefaction case histories are used in order to validate the proposed model. The performance of the proposed model is compared with a number of commonly used shear stress‐based liquefaction assessment methods. Finally, the logistic regression method is employed to obtain probabilistic boundary curves based on the present model. Parametric study of the proposed probabilistic model is carried out to verify its agreement with the previous methods.

Findings

It has been shown that the kinetic energy model works satisfactorily in classifying liquefied and non‐liquefied cases compared with the existing recommendations of shear stress‐based criterion. The results of the probabilistic kinetic energy model are in good agreement with those of previous studies and show a reasonable trend with respect to the variations of fines content and effective overburden pressure. The proposed model can be as used an alternative approach for assessment of liquefaction potential.

Originality/value

These findings make a sound basis for the development of a kinetic energy‐based method for assessment of liquefaction potential.

Details

Engineering Computations, vol. 28 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Sustainability Assessment
Type: Book
ISBN: 978-1-78743-481-3

1 – 10 of 809