Search results

1 – 10 of 988
Article
Publication date: 13 February 2023

Oguz Kose and Tugrul Oktay

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic…

Abstract

Purpose

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic approximation (i.e. SPSA), deep neural network and proportional integral derivative (i.e. PID) according to varying arm length (i.e. morphing).

Design/methodology/approach

In this paper, proper PID gain coefficients and morphing ratio were obtained using the stochastic optimization method, also known as SPSA to maximize flight efficiency. Because it is difficult to establish an analytical connection between the morphing ratio and hexarotor moments of inertia, the deep neural network was used to obtain the moments of inertia according to the morphing ratio. By using SPSA and deep neural network, the best performance indexes were obtained and both longitudinal and lateral flight simulations were performed with the obtained data.

Findings

With SPSA, the best PID coefficients and morphing ratio are obtained for both longitudinal and lateral flight. Because the hexarotor solid body model changes according to the morphing ratio, the moment of inertia values used in the simulations also change. According to the morphing ratio, the moment of inertia values was obtained with the deep neural network over a created data set.

Research limitations/implications

It takes a long time to obtain the morphing ratio suitable for the hexarotor model and the PID gain coefficients suitable for this morphing ratio. However, this situation can be overcome with the proposed SPSA. In addition, it takes a long time to obtain the appropriate moments of inertia according to the morphing ratio. However, in this case, it was overcome using the deep neural network.

Practical implications

Determining the morphing ratio and PID gain coefficients using the optimization method, as well as determining the moments of inertia using the deep neural network, is very useful as it can increase the efficiency of hexarotor flight and flight efficiently with different arm lengths. With the proposed method, the hexarotor design performance criteria (i.e. rise time, settling time and overshoot) values were significantly improved compared to similar studies.

Social implications

Determining the hexarotor flight parameters using SPSA and deep neural network provides advantages in terms of time, cost and applicability.

Originality/value

The hexarotor flight efficiency is improved with the proposed SPSA and deep neural network approaches. In addition, the desired flight parameters can be obtained more quickly and reliably with the proposed approaches. The design performance criteria were also improved, enabling the hexarotor UAV to follow the given trajectory in the best way and providing convenience for end users. SPSA was preferred because it converged faster than other methods. While other methods perform 2n operations per iteration, SPSA only performs two operations. To obtain the moment of inertia, many physical parameter values of the UAV are required in the existing methods. In the proposed method, by creating a date set, only arm length and moment of inertia were estimated without the need to obtain physical parameters with the deep neural network structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 May 2022

Qiucheng Liu

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of…

Abstract

Purpose

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Design/methodology/approach

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Findings

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Originality/value

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Details

Library Hi Tech, vol. 41 no. 5
Type: Research Article
ISSN: 0737-8831

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1707

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 June 2023

Nurcan Sarikaya Basturk

The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.

Abstract

Purpose

The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.

Design/methodology/approach

Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models.

Findings

The presented fusing approach significantly improves the detection accuracy of fire incidents in the input data.

Research limitations/implications

The computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models.

Practical implications

The simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images.

Social implications

By this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high.

Originality/value

This study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 December 2022

Jinchao Huang

Recently, the convolutional neural network (ConvNet) has a wide application in the classification of motor imagery EEG signals. However, the low signal-to-noise…

88

Abstract

Purpose

Recently, the convolutional neural network (ConvNet) has a wide application in the classification of motor imagery EEG signals. However, the low signal-to-noise electroencephalogram (EEG) signals are collected under the interference of noises. However, the conventional ConvNet model cannot directly solve this problem. This study aims to discuss the aforementioned issues.

Design/methodology/approach

To solve this problem, this paper adopted a novel residual shrinkage block (RSB) to construct the ConvNet model (RSBConvNet). During the feature extraction from EEG signals, the proposed RSBConvNet prevented the noise component in EEG signals, and improved the classification accuracy of motor imagery. In the construction of RSBConvNet, the author applied the soft thresholding strategy to prevent the non-related motor imagery features in EEG signals. The soft thresholding was inserted into the residual block (RB), and the suitable threshold for the current EEG signals distribution can be learned by minimizing the loss function. Therefore, during the feature extraction of motor imagery, the proposed RSBConvNet de-noised the EEG signals and improved the discriminative of classification features.

Findings

Comparative experiments and ablation studies were done on two public benchmark datasets. Compared with conventional ConvNet models, the proposed RSBConvNet model has obvious improvements in motor imagery classification accuracy and Kappa coefficient. Ablation studies have also shown the de-noised abilities of the RSBConvNet model. Moreover, different parameters and computational methods of the RSBConvNet model have been tested on the classification of motor imagery.

Originality/value

Based on the experimental results, the RSBConvNet constructed in this paper has an excellent recognition accuracy of MI-BCI, which can be used for further applications for the online MI-BCI.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 March 2022

G.L. Infant Cyril and J.P. Ananth

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The…

Abstract

Purpose

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The loan eligibility prediction model utilizes analysis method that adapts past and current information of credit user to make prediction. However, precise loan prediction with risk and assessment analysis is a major challenge in loan eligibility prediction.

Design/methodology/approach

This aim of the research technique is to present a new method, namely Social Border Collie Optimization (SBCO)-based deep neuro fuzzy network for loan eligibility prediction. In this method, box cox transformation is employed on input loan data to create the data apt for further processing. The transformed data utilize the wrapper-based feature selection to choose suitable features to boost the performance of loan eligibility calculation. Once the features are chosen, the naive Bayes (NB) is adapted for feature fusion. In NB training, the classifier builds probability index table with the help of input data features and groups values. Here, the testing of NB classifier is done using posterior probability ratio considering conditional probability of normalization constant with class evidence. Finally, the loan eligibility prediction is achieved by deep neuro fuzzy network, which is trained with designed SBCO. Here, the SBCO is devised by combining the social ski driver (SSD) algorithm and Border Collie Optimization (BCO) to produce the most precise result.

Findings

The analysis is achieved by accuracy, sensitivity and specificity parameter by. The designed method performs with the highest accuracy of 95%, sensitivity and specificity of 95.4 and 97.3%, when compared to the existing methods, such as fuzzy neural network (Fuzzy NN), multiple partial least squares regression model (Multi_PLS), instance-based entropy fuzzy support vector machine (IEFSVM), deep recurrent neural network (Deep RNN), whale social optimization algorithm-based deep RNN (WSOA-based Deep RNN).

Originality/value

This paper devises SBCO-based deep neuro fuzzy network for predicting loan eligibility. Here, the deep neuro fuzzy network is trained with proposed SBCO, which is devised by combining the SSD and BCO to produce most precise result for loan eligibility prediction.

Details

Kybernetes, vol. 52 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 February 2023

Riju Bhattacharya, Naresh Kumar Nagwani and Sarsij Tripathi

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on…

Abstract

Purpose

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on community detection. Despite the traditional spectral clustering and statistical inference methods, deep learning techniques for community detection have grown in popularity due to their ease of processing high-dimensional network data. Graph convolutional neural networks (GCNNs) have received much attention recently and have developed into a potential and ubiquitous method for directly detecting communities on graphs. Inspired by the promising results of graph convolutional networks (GCNs) in analyzing graph structure data, a novel community graph convolutional network (CommunityGCN) as a semi-supervised node classification model has been proposed and compared with recent baseline methods graph attention network (GAT), GCN-based technique for unsupervised community detection and Markov random fields combined with graph convolutional network (MRFasGCN).

Design/methodology/approach

This work presents the method for identifying communities that combines the notion of node classification via message passing with the architecture of a semi-supervised graph neural network. Six benchmark datasets, namely, Cora, CiteSeer, ACM, Karate, IMDB and Facebook, have been used in the experimentation.

Findings

In the first set of experiments, the scaled normalized average matrix of all neighbor's features including the node itself was obtained, followed by obtaining the weighted average matrix of low-dimensional nodes. In the second set of experiments, the average weighted matrix was forwarded to the GCN with two layers and the activation function for predicting the node class was applied. The results demonstrate that node classification with GCN can improve the performance of identifying communities on graph datasets.

Originality/value

The experiment reveals that the CommunityGCN approach has given better results with accuracy, normalized mutual information, F1 and modularity scores of 91.26, 79.9, 92.58 and 70.5 per cent, respectively, for detecting communities in the graph network, which is much greater than the range of 55.7–87.07 per cent reported in previous literature. Thus, it has been concluded that the GCN with node classification models has improved the accuracy.

Details

Data Technologies and Applications, vol. 57 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 March 2023

Sedat Metlek

The purpose of this study is to develop and test a new deep learning model to predict aircraft fuel consumption. For this purpose, real data obtained from different landings and…

Abstract

Purpose

The purpose of this study is to develop and test a new deep learning model to predict aircraft fuel consumption. For this purpose, real data obtained from different landings and take-offs were used. As a result, a new hybrid convolutional neural network (CNN)-bi-directional long short term memory (BiLSTM) model was developed as intended.

Design/methodology/approach

The data used are divided into training and testing according to the k-fold 5 value. In this study, 13 different parameters were used together as input parameters. Fuel consumption was used as the output parameter. Thus, the effect of many input parameters on fuel flow was modeled simultaneously using the deep learning method in this study. In addition, the developed hybrid model was compared with the existing deep learning models long short term memory (LSTM) and BiLSTM.

Findings

In this study, when tested with LSTM, one of the existing deep learning models, values of 0.9162, 6.476, and 5.76 were obtained for R2, root mean square error (RMSE), and mean absolute percentage error (MAPE), respectively. For the BiLSTM model when tested, values of 0.9471, 5.847 and 4.62 were obtained for R2, RMSE and MAPE, respectively. In the proposed hybrid model when tested, values of 0.9743, 2.539 and 1.62 were obtained for R2, RMSE and MAPE, respectively. The results obtained according to the LSTM and BiLSTM models are much closer to the actual fuel consumption values. The error of the models used was verified against the actual fuel flow reports, and an average absolute percent error value of less than 2% was obtained.

Originality/value

In this study, a new hybrid CNN-BiLSTM model is proposed. The proposed model is trained and tested with real flight data for fuel consumption estimation. As a result of the test, it is seen that it gives much better results than the LSTM and BiLSTM methods found in the literature. For this reason, it can be used in many different engine types and applications in different fields, especially the turboprop engine used in the study. Because it can be applied to different engines than the engine type used in the study, it can be easily integrated into many simulation models.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 12 months (988)

Content type

Article (988)
1 – 10 of 988