Search results

1 – 10 of over 67000
Article
Publication date: 3 July 2020

Azra Nazir, Roohie Naaz Mir and Shaima Qureshi

The trend of “Deep Learning for Internet of Things (IoT)” has gained fresh momentum with enormous upcoming applications employing these models as their processing engine and Cloud…

274

Abstract

Purpose

The trend of “Deep Learning for Internet of Things (IoT)” has gained fresh momentum with enormous upcoming applications employing these models as their processing engine and Cloud as their resource giant. But this picture leads to underutilization of ever-increasing device pool of IoT that has already passed 15 billion mark in 2015. Thus, it is high time to explore a different approach to tackle this issue, keeping in view the characteristics and needs of the two fields. Processing at the Edge can boost applications with real-time deadlines while complementing security.

Design/methodology/approach

This review paper contributes towards three cardinal directions of research in the field of DL for IoT. The first section covers the categories of IoT devices and how Fog can aid in overcoming the underutilization of millions of devices, forming the realm of the things for IoT. The second direction handles the issue of immense computational requirements of DL models by uncovering specific compression techniques. An appropriate combination of these techniques, including regularization, quantization, and pruning, can aid in building an effective compression pipeline for establishing DL models for IoT use-cases. The third direction incorporates both these views and introduces a novel approach of parallelization for setting up a distributed systems view of DL for IoT.

Findings

DL models are growing deeper with every passing year. Well-coordinated distributed execution of such models using Fog displays a promising future for the IoT application realm. It is realized that a vertically partitioned compressed deep model can handle the trade-off between size, accuracy, communication overhead, bandwidth utilization, and latency but at the expense of an additionally considerable memory footprint. To reduce the memory budget, we propose to exploit Hashed Nets as potentially favorable candidates for distributed frameworks. However, the critical point between accuracy and size for such models needs further investigation.

Originality/value

To the best of our knowledge, no study has explored the inherent parallelism in deep neural network architectures for their efficient distribution over the Edge-Fog continuum. Besides covering techniques and frameworks that have tried to bring inference to the Edge, the review uncovers significant issues and possible future directions for endorsing deep models as processing engines for real-time IoT. The study is directed to both researchers and industrialists to take on various applications to the Edge for better user experience.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 December 2023

Erin Gatz and Tom Akiva

This study focuses on a regional education network in the Mid-Atlantic that aims to facilitate equitable learning practices by providing ongoing teacher/leader support…

Abstract

Purpose

This study focuses on a regional education network in the Mid-Atlantic that aims to facilitate equitable learning practices by providing ongoing teacher/leader support, cross-sector collaboration and professional learning for educators. The authors probe networks as providing core support for systems level change and serving as precursors to the community engagement that is essential for deeper learning. Specifically, this study is driven by the hypotheses that (1) deeper learning may be supported by pathways for students and educators to meaningfully engage with the local community; (2) deeper learning is more likely to happen when educators connect to communities beyond their own school or organization and (3) education networks can help facilitate those functions.

Design/methodology/approach

The authors aimed to understand how participation in an education network influenced members (which include school leaders, teachers and leaders of youth programs) and how experiences might differ by level of participation. The authors conducted interviews with individuals across three groups of adults (n = 111 total): core members (n = 16), members with mid-level engagement (n = 30) and peripheral members (n = 65).

Findings

Educators who participated most intensely and deeply described the network as a vehicle for learning about and advancing equity through specific practices including individualized learning, increasing access and resource redistribution. Mid-level participants emphasized the professional network building function of the network. For peripheral or new participants, the most salient function of the network was celebration of education and educators. These findings suggest that education networks have a role in strengthening the structures that support leaders to make deeper learning happen.

Research limitations/implications

More research is needed on how participants move from the periphery to more core involvement in education networks, where they may gain the full benefits of participation. Further research is also needed to explore the link between education network engagement among school leaders and the deeper learning environments in schools.

Originality/value

Research on education networks is limited. To the authors' knowledge, the present study is one of the largest collections and analyses of interviews with education network members to date. The authors present education network engagement as a precursor for community embedded deeper learning in schools.

Article
Publication date: 10 August 2021

Deepa S.N.

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous…

251

Abstract

Purpose

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization. Ubiquitous machine learning computational model process performs training in a better way than regular supervised learning or unsupervised learning computational models with deep learning techniques, resulting in better learning and optimization for the considered problem domain of cloud-based internet-of-things (IOTs). This study aims to improve the network quality and improve the data accuracy rate during the network transmission process using the developed ubiquitous deep learning computational model.

Design/methodology/approach

In this research study, a novel intelligent ubiquitous machine learning computational model is designed and modelled to maintain the optimal energy level of cloud IOTs in sensor network domains. A new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization is developed. A new unified deterministic sine-cosine algorithm has been developed in this study for parameter optimization of weight factors in the ubiquitous machine learning model.

Findings

The newly developed ubiquitous model is used for finding network energy and performing its optimization in the considered sensor network model. At the time of progressive simulation, residual energy, network overhead, end-to-end delay, network lifetime and a number of live nodes are evaluated. It is elucidated from the results attained, that the ubiquitous deep learning model resulted in better metrics based on its appropriate cluster selection and minimized route selection mechanism.

Research limitations/implications

In this research study, a novel ubiquitous computing model derived from a new optimization algorithm called a unified deterministic sine-cosine algorithm and deep learning technique was derived and applied for maintaining the optimal energy level of cloud IOTs in sensor networks. The deterministic levy flight concept is applied for developing the new optimization technique and this tends to determine the parametric weight values for the deep learning model. The ubiquitous deep learning model is designed with auto-encoders and decoders and their corresponding layers weights are determined for optimal values with the optimization algorithm. The modelled ubiquitous deep learning approach was applied in this study to determine the network energy consumption rate and thereby optimize the energy level by increasing the lifetime of the sensor network model considered. For all the considered network metrics, the ubiquitous computing model has proved to be effective and versatile than previous approaches from early research studies.

Practical implications

The developed ubiquitous computing model with deep learning techniques can be applied for any type of cloud-assisted IOTs in respect of wireless sensor networks, ad hoc networks, radio access technology networks, heterogeneous networks, etc. Practically, the developed model facilitates computing the optimal energy level of the cloud IOTs for any considered network models and this helps in maintaining a better network lifetime and reducing the end-to-end delay of the networks.

Social implications

The social implication of the proposed research study is that it helps in reducing energy consumption and increases the network lifetime of the cloud IOT based sensor network models. This approach helps the people in large to have a better transmission rate with minimized energy consumption and also reduces the delay in transmission.

Originality/value

In this research study, the network optimization of cloud-assisted IOTs of sensor network models is modelled and analysed using machine learning models as a kind of ubiquitous computing system. Ubiquitous computing models with machine learning techniques develop intelligent systems and enhances the users to make better and faster decisions. In the communication domain, the use of predictive and optimization models created with machine learning accelerates new ways to determine solutions to problems. Considering the importance of learning techniques, the ubiquitous computing model is designed based on a deep learning strategy and the learning mechanism adapts itself to attain a better network optimization model.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 9 March 2022

G.L. Infant Cyril and J.P. Ananth

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The…

Abstract

Purpose

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The loan eligibility prediction model utilizes analysis method that adapts past and current information of credit user to make prediction. However, precise loan prediction with risk and assessment analysis is a major challenge in loan eligibility prediction.

Design/methodology/approach

This aim of the research technique is to present a new method, namely Social Border Collie Optimization (SBCO)-based deep neuro fuzzy network for loan eligibility prediction. In this method, box cox transformation is employed on input loan data to create the data apt for further processing. The transformed data utilize the wrapper-based feature selection to choose suitable features to boost the performance of loan eligibility calculation. Once the features are chosen, the naive Bayes (NB) is adapted for feature fusion. In NB training, the classifier builds probability index table with the help of input data features and groups values. Here, the testing of NB classifier is done using posterior probability ratio considering conditional probability of normalization constant with class evidence. Finally, the loan eligibility prediction is achieved by deep neuro fuzzy network, which is trained with designed SBCO. Here, the SBCO is devised by combining the social ski driver (SSD) algorithm and Border Collie Optimization (BCO) to produce the most precise result.

Findings

The analysis is achieved by accuracy, sensitivity and specificity parameter by. The designed method performs with the highest accuracy of 95%, sensitivity and specificity of 95.4 and 97.3%, when compared to the existing methods, such as fuzzy neural network (Fuzzy NN), multiple partial least squares regression model (Multi_PLS), instance-based entropy fuzzy support vector machine (IEFSVM), deep recurrent neural network (Deep RNN), whale social optimization algorithm-based deep RNN (WSOA-based Deep RNN).

Originality/value

This paper devises SBCO-based deep neuro fuzzy network for predicting loan eligibility. Here, the deep neuro fuzzy network is trained with proposed SBCO, which is devised by combining the SSD and BCO to produce most precise result for loan eligibility prediction.

Details

Kybernetes, vol. 52 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 June 2021

Emre Kiyak and Gulay Unal

The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to…

Abstract

Purpose

The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft.

Design/methodology/approach

First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed.

Findings

The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%.

Originality/value

Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 April 2017

Yasser F. Hassan

This paper aims to utilize machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications.

Abstract

Purpose

This paper aims to utilize machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications.

Design/methodology/approach

The objective of this work is to propose a model for deep rough set theory that uses more than decision table and approximating these tables to a classification system, i.e. the paper propose a novel framework of deep learning based on multi-decision tables.

Findings

The paper tries to coordinate the local properties of individual decision table to provide an appropriate global decision from the system.

Research limitations/implications

The rough set learning assumes the existence of a single decision table, whereas real-world decision problem implies several decisions with several different decision tables. The new proposed model can handle multi-decision tables.

Practical implications

The proposed classification model is implemented on social networks with preferred features which are freely distribute as social entities with accuracy around 91 per cent.

Social implications

The deep learning using rough sets theory simulate the way of brain thinking and can solve the problem of existence of different information about same problem in different decision systems

Originality/value

This paper utilizes machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications.

Details

Kybernetes, vol. 46 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 February 2023

Oguz Kose and Tugrul Oktay

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic…

Abstract

Purpose

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic approximation (i.e. SPSA), deep neural network and proportional integral derivative (i.e. PID) according to varying arm length (i.e. morphing).

Design/methodology/approach

In this paper, proper PID gain coefficients and morphing ratio were obtained using the stochastic optimization method, also known as SPSA to maximize flight efficiency. Because it is difficult to establish an analytical connection between the morphing ratio and hexarotor moments of inertia, the deep neural network was used to obtain the moments of inertia according to the morphing ratio. By using SPSA and deep neural network, the best performance indexes were obtained and both longitudinal and lateral flight simulations were performed with the obtained data.

Findings

With SPSA, the best PID coefficients and morphing ratio are obtained for both longitudinal and lateral flight. Because the hexarotor solid body model changes according to the morphing ratio, the moment of inertia values used in the simulations also change. According to the morphing ratio, the moment of inertia values was obtained with the deep neural network over a created data set.

Research limitations/implications

It takes a long time to obtain the morphing ratio suitable for the hexarotor model and the PID gain coefficients suitable for this morphing ratio. However, this situation can be overcome with the proposed SPSA. In addition, it takes a long time to obtain the appropriate moments of inertia according to the morphing ratio. However, in this case, it was overcome using the deep neural network.

Practical implications

Determining the morphing ratio and PID gain coefficients using the optimization method, as well as determining the moments of inertia using the deep neural network, is very useful as it can increase the efficiency of hexarotor flight and flight efficiently with different arm lengths. With the proposed method, the hexarotor design performance criteria (i.e. rise time, settling time and overshoot) values were significantly improved compared to similar studies.

Social implications

Determining the hexarotor flight parameters using SPSA and deep neural network provides advantages in terms of time, cost and applicability.

Originality/value

The hexarotor flight efficiency is improved with the proposed SPSA and deep neural network approaches. In addition, the desired flight parameters can be obtained more quickly and reliably with the proposed approaches. The design performance criteria were also improved, enabling the hexarotor UAV to follow the given trajectory in the best way and providing convenience for end users. SPSA was preferred because it converged faster than other methods. While other methods perform 2n operations per iteration, SPSA only performs two operations. To obtain the moment of inertia, many physical parameter values of the UAV are required in the existing methods. In the proposed method, by creating a date set, only arm length and moment of inertia were estimated without the need to obtain physical parameters with the deep neural network structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 November 2020

Yi-Chun Chang, Kuan-Ting Lai, Seng-Cho T. Chou, Wei-Chuan Chiang and Yuan-Chen Lin

Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be…

Abstract

Purpose

Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be identified and captured. One strategy is to analyze the fraud interaction network using social network analysis. However, the underlying structures of fraud networks are different from those of common social networks, which makes traditional indicators such as centrality not directly applicable. Recently, a new line of research called deep random walk has emerged. These methods utilize random walks to explore local information and then apply deep learning algorithms to learn the representative feature vectors. Although effective for many types of networks, random walk is used for discovering local structural equivalence and does not consider the global properties of nodes.

Design/methodology/approach

The authors proposed a new method to combine the merits of deep random walk and social network analysis, which is called centrality-guided deep random walk. By using the centrality of nodes as edge weights, the authors’ biased random walks implicitly consider the global importance of nodes and can thus find key fraudster roles more accurately. To evaluate the authors’ algorithm, a real telecom fraud data set with around 562 fraudsters was built, which is the largest telecom fraud network to date.

Findings

The authors’ proposed method achieved better results than traditional centrality indices and various deep random walk algorithms and successfully identified key roles in a fraud network.

Research limitations/implications

The study used co-offending and flight record to construct a criminal network, more interpersonal relationships of fraudsters, such as friendships and relatives, can be included in the future.

Originality/value

This paper proposed a novel algorithm, centrality-guided deep random walk, and applied it to a new telecom fraud data set. Experimental results show that the authors’ method can successfully identify the key roles in a fraud group and outperform other baseline methods. To the best of the authors’ knowledge, it is the largest analysis of telecom fraud network to date.

Details

Data Technologies and Applications, vol. 55 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 December 2023

Julie Kallio

A core challenge for leaders for deeper learning is scaling promising practices to provide students with systematic access to deeper learning experiences. This case illuminates…

Abstract

Purpose

A core challenge for leaders for deeper learning is scaling promising practices to provide students with systematic access to deeper learning experiences. This case illuminates how a group of researchers organized professional learning activities around conferring, a promising deeper learning practice.

Design/methodology/approach

The author examines how the leaders of a Networked Improvement Community (NIC) created the conditions for teachers to share their deeper learning practices through a case study. The case study centers on one school team’s learning through their participation in the NIC activities, as evidenced by the artifacts they created and their exchanges with their team, participants from other schools and researchers.

Findings

The trajectory of one team through three NIC activities – a video club, a pitch and user testing – shows how they examined their own conferring practice, got ideas for change and shifted their thinking and practice toward a more student-centered approach. Insights from the case suggest three design principles – a common problem of practice, shared representations of practice and intentional network configurations – for deeper professional learning, or learning experiences that engage educators in purposeful and collaborative inquiry into deeper learning practices.

Research limitations/implications

Two limitations of the case are a lack of data on the perceived experience of participants, which could speak to the depth of Irving’s shift toward student-centered conferring, and the narrow time scope of the NIC, which limits exploration of the sustainability of the changes to conferring.

Practical implications

The design principles represent important features for researchers and leaders to consider in ongoing efforts to scale deeper learning. Leaders might use the principles to examine existing or future professional learning efforts.

Originality/value

This case study extends an understanding of one facet of leadership for deeper learning: fostering professional community. Future research is needed to examine the educator experience of participating in deeper professional learning and its sustained impact on practices.

Details

Journal of Educational Administration, vol. 62 no. 1
Type: Research Article
ISSN: 0957-8234

Keywords

1 – 10 of over 67000