Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 6 May 2022

Mohammed Ayoub Ledhem

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric…

1497

Abstract

Purpose

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information.

Design/methodology/approach

This paper uses the nonlinear autoregressive exogenous (NARX) neural network as the optimal DL approach for predicting daily accuracy improvement through small and big data of symmetric volatility information of the JKII based on the criteria of the highest accuracy score of testing and training. To train the neural network, this paper employs the three DL techniques, namely Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG).

Findings

The experimental results show that the optimal DL technique for predicting daily accuracy improvement of the JKII prices is the LM training algorithm based on using small data which provide superior prediction accuracy to big data of symmetric volatility information. The LM technique develops the optimal network solution for the prediction process with 24 neurons in the hidden layer across a delay parameter equal to 20, which affords the best predicting accuracy based on the criteria of mean squared error (MSE) and correlation coefficient.

Practical implications

This research would fill a literature gap by offering new operative techniques of DL to predict daily accuracy improvement and reduce the trading risk for the JKII prices based on symmetric volatility information.

Originality/value

This research is the first that predicts the daily accuracy improvement for JKII prices using DL with symmetric volatility information.

Details

Journal of Capital Markets Studies, vol. 6 no. 2
Type: Research Article
ISSN: 2514-4774

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

12361

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. 20 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Abstract

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 3
Type: Research Article
ISSN: 1742-7371

Open Access
Article
Publication date: 29 September 2022

Manju Priya Arthanarisamy Ramaswamy and Suja Palaniswamy

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG)…

1320

Abstract

Purpose

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG), electromyography (EMG), electrodermal activity (EDA), temperature, plethysmograph and respiration. The experiments are conducted on both modalities independently and in combination. This study arranges the physiological signals in order based on the prediction accuracy obtained on test data using time and frequency domain features.

Design/methodology/approach

DEAP dataset is used in this experiment. Time and frequency domain features of EEG and physiological signals are extracted, followed by correlation-based feature selection. Classifiers namely – Naïve Bayes, logistic regression, linear discriminant analysis, quadratic discriminant analysis, logit boost and stacking are trained on the selected features. Based on the performance of the classifiers on the test set, the best modality for each dimension of emotion is identified.

Findings

 The experimental results with EEG as one modality and all physiological signals as another modality indicate that EEG signals are better at arousal prediction compared to physiological signals by 7.18%, while physiological signals are better at valence prediction compared to EEG signals by 3.51%. The valence prediction accuracy of EOG is superior to zygomaticus electromyography (zEMG) and EDA by 1.75% at the cost of higher number of electrodes. This paper concludes that valence can be measured from the eyes (EOG) while arousal can be measured from the changes in blood volume (plethysmograph). The sorted order of physiological signals based on arousal prediction accuracy is plethysmograph, EOG (hEOG + vEOG), vEOG, hEOG, zEMG, tEMG, temperature, EMG (tEMG + zEMG), respiration, EDA, while based on valence prediction accuracy the sorted order is EOG (hEOG + vEOG), EDA, zEMG, hEOG, respiration, tEMG, vEOG, EMG (tEMG + zEMG), temperature and plethysmograph.

Originality/value

Many of the emotion recognition studies in literature are subject dependent and the limited subject independent emotion recognition studies in the literature report an average of leave one subject out (LOSO) validation result as accuracy. The work reported in this paper sets the baseline for subject independent emotion recognition using DEAP dataset by clearly specifying the subjects used in training and test set. In addition, this work specifies the cut-off score used to classify the scale as low or high in arousal and valence dimensions. Generally, statistical features are used for emotion recognition using physiological signals as a modality, whereas in this work, time and frequency domain features of physiological signals and EEG are used. This paper concludes that valence can be identified from EOG while arousal can be predicted from plethysmograph.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 November 2022

Bianca Caiazzo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo and Stefania Santini

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status…

2950

Abstract

Purpose

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status and detect eventual anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the specific anomalous event and the related risk classification for possible intervention, is hence proposed.

Design/methodology/approach

The proposed solution is a five-layer scalable and modular platform in Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection solution, designed by leveraging control charts, autoencoders (AE) long short-term memory (LSTM) and Fuzzy Inference System (FIS). The proper combination of these methods allows, not only detecting the products defects, but also recognizing their causalities.

Findings

The proposed architecture, experimentally validated on a manufacturing system involved into the production of a solar thermal high-vacuum flat panel, provides to human operators information about anomalous events, where they occur, and crucial information about their risk levels.

Practical implications

Thanks to the abnormal risk panel; human operators and business managers are able, not only of remotely visualizing the real-time status of each production parameter, but also to properly face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency situation, such as the COVID-19 pandemic.

Originality/value

The monitoring platform is one of the first attempts in leading modern manufacturing systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines, cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect causalities in complex dynamic systems by enabling the possibility of products’ waste avoidance.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Abstract

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 6
Type: Research Article
ISSN: 0951-3574

Open Access
Article
Publication date: 16 July 2021

Gustavo Grander, Luciano Ferreira da Silva and Ernesto Del Rosário Santibañez Gonzalez

This paper aims to analyze how decision support systems manage Big data to obtain value.

3951

Abstract

Purpose

This paper aims to analyze how decision support systems manage Big data to obtain value.

Design/methodology/approach

A systematic literature review was performed with screening and analysis of 72 articles published between 2012 and 2019.

Findings

The findings reveal that techniques of big data analytics, machine learning algorithms and technologies predominantly related to computer science and cloud computing are used on decision support systems. Another finding was that the main areas that these techniques and technologies are been applied are logistic, traffic, health, business and market. This article also allows authors to understand the relationship in which descriptive, predictive and prescriptive analyses are used according to an inverse relationship of complexity in data analysis and the need for human decision-making.

Originality/value

As it is an emerging theme, this study seeks to present an overview of the techniques and technologies that are being discussed in the literature to solve problems in their respective areas, as a form of theoretical contribution. The authors also understand that there is a practical contribution to the maturity of the discussion and with reflections even presented as suggestions for future research, such as the ethical discussion. This study’s descriptive classification can also serve as a guide for new researchers who seek to understand the research involving decision support systems and big data to gain value in our society.

Details

Revista de Gestão, vol. 28 no. 3
Type: Research Article
ISSN: 1809-2276

Keywords

Open Access
Article
Publication date: 23 January 2023

Hussein Y.H. Alnajjar and Osman Üçüncü

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks

1483

Abstract

Purpose

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks (ANNs) are one of the most important of these models, and they are increasingly being used to forecast water resource variables. The goal of this study was to create an ANN model to estimate the removal efficiency of biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) at the effluent of various primary and secondary treatment methods in a wastewater treatment plant (WWTP).

Design/methodology/approach

The MATLAB App Designer model was used to generate the data set. Various combinations of wastewater quality data, such as temperature(T), TN, TP and hydraulic retention time (HRT) are used as inputs into the ANN to assess the degree of effect of each of these variables on BOD, TN, TP and TSS removal efficiency. Two of the models reflect two different types of primary treatment, while the other nine models represent different types of subsequent treatment. The ANN model’s findings are compared to the MATLAB App Designer model. For evaluating model performance, mean square error (MSE) and coefficient of determination statistics (R2) are utilized as comparative metrics.

Findings

For both training and testing, the R values for the ANN models were greater than 0.99. Based on the comparisons, it was discovered that the ANN model can be used to estimate the removal efficiency of BOD, TN, TP and TSS in WWTP and that the ANN model produces very similar and satisfying results to the APPDESIGNER model. The R-value (Correlation coefficient) of 0.9909 and the MSE of 5.962 indicate that the model is accurate. Because of the many benefits of the ANN models used in this study, it has a lot of potential as a general modeling tool for a range of other complicated process systems that are difficult to solve using conventional modeling techniques.

Originality/value

The objective of this study was to develop an ANN model that could be used to estimate the removal efficiency of pollutants such as BOD, TN, TP and TSS at the effluent of various primary and secondary treatment methods in a WWTP. In the future, the ANN could be used to design a new WWTP and forecast the removal efficiency of pollutants.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 13 January 2022

Dinda Thalia Andariesta and Meditya Wasesa

This research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.

5545

Abstract

Purpose

This research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.

Design/methodology/approach

To develop the prediction models, this research utilizes multisource Internet data from TripAdvisor travel forum and Google Trends. Temporal factors, posts and comments, search queries index and previous tourist arrivals records are set as predictors. Four sets of predictors and three distinct data compositions were utilized for training the machine learning models, namely artificial neural networks (ANNs), support vector regression (SVR) and random forest (RF). To evaluate the models, this research uses three accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).

Findings

Prediction models trained using multisource Internet data predictors have better accuracy than those trained using single-source Internet data or other predictors. In addition, using more training sets that cover the phenomenon of interest, such as COVID-19, will enhance the prediction model's learning process and accuracy. The experiments show that the RF models have better prediction accuracy than the ANN and SVR models.

Originality/value

First, this study pioneers the practice of a multisource Internet data approach in predicting tourist arrivals amid the unprecedented COVID-19 pandemic. Second, the use of multisource Internet data to improve prediction performance is validated with real empirical data. Finally, this is one of the few papers to provide perspectives on the current dynamics of Indonesia's tourism demand.

1 – 10 of over 2000